BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 17690205)

  • 1. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation.
    Gupta N; Tanner S; Jaitly N; Adkins JN; Lipton M; Edwards R; Romine M; Osterman A; Bafna V; Smith RD; Pevzner PA
    Genome Res; 2007 Sep; 17(9):1362-77. PubMed ID: 17690205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium.
    Ansong C; Tolić N; Purvine SO; Porwollik S; Jones M; Yoon H; Payne SH; Martin JL; Burnet MC; Monroe ME; Venepally P; Smith RD; Peterson SN; Heffron F; McClelland M; Adkins JN
    BMC Genomics; 2011 Aug; 12():433. PubMed ID: 21867535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes.
    Gupta N; Benhamida J; Bhargava V; Goodman D; Kain E; Kerman I; Nguyen N; Ollikainen N; Rodriguez J; Wang J; Lipton MS; Romine M; Bafna V; Smith RD; Pevzner PA
    Genome Res; 2008 Jul; 18(7):1133-42. PubMed ID: 18426904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating 'top-down" and "bottom-up" mass spectrometric approaches for proteomic analysis of Shewanella oneidensis.
    VerBerkmoes NC; Bundy JL; Hauser L; Asano KG; Razumovskaya J; Larimer F; Hettich RL; Stephenson JL
    J Proteome Res; 2002; 1(3):239-52. PubMed ID: 12645901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics.
    Müller SA; Findeiß S; Pernitzsch SR; Wissenbach DK; Stadler PF; Hofacker IL; von Bergen M; Kalkhof S
    J Proteomics; 2013 Jun; 86():27-42. PubMed ID: 23665149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics.
    Elias DA; Monroe ME; Marshall MJ; Romine MF; Belieav AS; Fredrickson JK; Anderson GA; Smith RD; Lipton MS
    Proteomics; 2005 Aug; 5(12):3120-30. PubMed ID: 16038018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics.
    McAfee A; Harpur BA; Michaud S; Beavis RC; Kent CF; Zayed A; Foster LJ
    J Proteome Res; 2016 Feb; 15(2):411-21. PubMed ID: 26718741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Experimental Proteome of
    Sanchiz Á; Morato E; Rastrojo A; Camacho E; González-de la Fuente SG; Marina A; Aguado B; Requena JM
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32887454
    [No Abstract]   [Full Text] [Related]  

  • 11. A new method for C-terminal sequence analysis in the proteomic era.
    Samyn B; Sergeant K; Castanheira P; Faro C; Van Beeumen J
    Nat Methods; 2005 Mar; 2(3):193-200. PubMed ID: 15782188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative temporal proteomics of a response regulator (SO2426)-deficient strain and wild-type Shewanella oneidensis MR-1 during chromate transformation.
    Chourey K; Thompson MR; Shah M; Zhang B; Verberkmoes NC; Thompson DK; Hettich RL
    J Proteome Res; 2009 Jan; 8(1):59-71. PubMed ID: 19118451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example.
    de Souza GA; Målen H; Søfteland T; Saelensminde G; Prasad S; Jonassen I; Wiker HG
    BMC Genomics; 2008 Jul; 9():316. PubMed ID: 18597682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ortho-proteogenomics: multiple proteomes investigation through orthology and a new MS-based protocol.
    Gallien S; Perrodou E; Carapito C; Deshayes C; Reyrat JM; Van Dorsselaer A; Poch O; Schaeffer C; Lecompte O
    Genome Res; 2009 Jan; 19(1):128-35. PubMed ID: 18955433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline.
    Yang M; Lin X; Liu X; Zhang J; Ge F
    Mol Plant; 2018 Oct; 11(10):1292-1307. PubMed ID: 30176371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans.
    Cao XJ; Dai J; Xu H; Nie S; Chang X; Hu BY; Sheng QH; Wang LS; Ning ZB; Li YX; Guo XK; Zhao GP; Zeng R
    Cell Res; 2010 Feb; 20(2):197-210. PubMed ID: 19918266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons.
    Baudet M; Ortet P; Gaillard JC; Fernandez B; Guérin P; Enjalbal C; Subra G; de Groot A; Barakat M; Dedieu A; Armengaud J
    Mol Cell Proteomics; 2010 Feb; 9(2):415-26. PubMed ID: 19875382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining Complete Human Proteomes.
    Martinez-Val A; Guzmán UH; Olsen JV
    Annu Rev Genomics Hum Genet; 2022 Aug; 23():99-121. PubMed ID: 35440146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification.
    Carroll AJ; Heazlewood JL; Ito J; Millar AH
    Mol Cell Proteomics; 2008 Feb; 7(2):347-69. PubMed ID: 17934214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.