These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1769023)

  • 21. Mechanisms of contrast enhancement in magnetic resonance imaging.
    Lee DH
    Can Assoc Radiol J; 1991 Feb; 42(1):6-12. PubMed ID: 2001531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relaxometric evaluation of novel manganese(II) complexes for application as contrast agents in magnetic resonance imaging.
    Aime S; Anelli L; Botta M; Brocchetta M; Canton S; Fedeli F; Gianolio E; Terreno E
    J Biol Inorg Chem; 2002 Jan; 7(1-2):58-67. PubMed ID: 11862541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alteration of electronic relaxation in MR contrast agents through de-novo ligand design.
    Shukla RB; Kumar K; Weber R; Zhang X; Tweedle M
    Acta Radiol Suppl; 1997; 412():121-3. PubMed ID: 9240090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action.
    Caravan P
    Acc Chem Res; 2009 Jul; 42(7):851-62. PubMed ID: 19222207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Test of Electron Delocalization Effects on Water-Proton Spin-Lattice Relaxation by Bromination of [Tetrakis(4-sulfonatopheny)porphine]manganese.
    Bryant LH; Hodges MW; Bryant RG
    Inorg Chem; 1999 Mar; 38(5):1002-1005. PubMed ID: 11670874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly soluble tris-hydroxypyridonate Gd(III) complexes with increased hydration number, fast water exchange, slow electronic relaxation, and high relaxivity.
    Werner EJ; Avedano S; Botta M; Hay BP; Moore EG; Aime S; Raymond KN
    J Am Chem Soc; 2007 Feb; 129(7):1870-1. PubMed ID: 17260995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of paramagnetic ions bound to human serum albumin on water 1HNMR relaxation times.
    Marzola P; Cannistraro S
    Physiol Chem Phys Med NMR; 1986; 18(4):263-73. PubMed ID: 3615639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights on the relaxation of liposomes encapsulating paramagnetic Ln-based complexes.
    Mulas G; Ferrauto G; Dastrù W; Anedda R; Aime S; Terreno E
    Magn Reson Med; 2015 Aug; 74(2):468-73. PubMed ID: 25186276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paramagnetic macrocyclic complexes as contrast agents for MR imaging: proton nuclear relaxation rate enhancement in aqueous solution and in rat tissues.
    Jackels SC; Kroos BR; Hinson WH; Karstaedt N; Moran PR
    Radiology; 1986 May; 159(2):525-30. PubMed ID: 3961187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-molecular-weight paramagnetic
    Herynek V; Martinisková M; Bobrova Y; Gálisová A; Kotek J; Hermann P; Koucký F; Jirák D; Hájek M
    MAGMA; 2019 Feb; 32(1):115-122. PubMed ID: 30498883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.
    Zeng L; Ren W; Zheng J; Cui P; Wu A
    Phys Chem Chem Phys; 2012 Feb; 14(8):2631-6. PubMed ID: 22273844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-Chelated Polymer Nanodiscs for NMR Studies.
    Hardin NZ; Kocman V; Di Mauro GM; Ravula T; Ramamoorthy A
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17246-17250. PubMed ID: 31529579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted contrast agents in MR imaging.
    Gupta H; Weissleder R
    Magn Reson Imaging Clin N Am; 1996 Feb; 4(1):171-84. PubMed ID: 8673713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gd3+-TPPS: a potential paramagnetic contrast agent in NMR imaging.
    Marzola P; Cannistraro S
    Physiol Chem Phys Med NMR; 1987; 19(4):279-82. PubMed ID: 3449867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplification strategies in MR imaging: activation and accumulation of sensing contrast agents (SCAs).
    Querol M; Bogdanov A
    J Magn Reson Imaging; 2006 Nov; 24(5):971-82. PubMed ID: 17024658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-Ligand Recognition Index Determination by NMR Proton Relaxation Study.
    Bonechi C; Donati A; Tamasi G; Pardini A; Volpi V; Leone G; Consumi M; Magnani A; Rossi C
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging.
    Chauvin T; Torres S; Rosseto R; Kotek J; Badet B; Durand P; Tóth E
    Chemistry; 2012 Jan; 18(5):1408-18. PubMed ID: 22213022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.
    Wang W; Dong H; Pacheco V; Willbold D; Zhang Y; Offenhaeusser A; Hartmann R; Weirich TE; Ma P; Krause HJ; Gu Z
    J Phys Chem B; 2011 Dec; 115(49):14789-93. PubMed ID: 21972868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
    Tóth E; Bolskar RD; Borel A; González G; Helm L; Merbach AE; Sitharaman B; Wilson LJ
    J Am Chem Soc; 2005 Jan; 127(2):799-805. PubMed ID: 15643906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.