These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1769023)

  • 41. Large Protein Assemblies for High-Relaxivity Contrast Agents: The Case of Gadolinium-Labeled Asparaginase.
    Licciardi G; Rizzo D; Salobehaj M; Massai L; Geri A; Messori L; Ravera E; Fragai M; Parigi G
    Bioconjug Chem; 2022 Dec; 33(12):2411-2419. PubMed ID: 36458591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging.
    Viswanathan S; Kovacs Z; Green KN; Ratnakar SJ; Sherry AD
    Chem Rev; 2010 May; 110(5):2960-3018. PubMed ID: 20397688
    [No Abstract]   [Full Text] [Related]  

  • 43. Paramagnetic water proton relaxation enhancement: from contrast agents in MRI to reagents for quantitative "in vitro" assays.
    Aime S; Botta M; Ermondi G; Fasano M; Terreno E
    Magn Reson Imaging; 1992; 10(5):849-54. PubMed ID: 1461081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross-linked DTPA polysaccharides for magnetic resonance imaging. Synthesis and relaxation properties.
    Gibby WA; Bogdan A; Ovitt TW
    Invest Radiol; 1989 Apr; 24(4):302-9. PubMed ID: 2745011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeted relaxation enhancement agents for MRI.
    Lauffer RB
    Magn Reson Med; 1991 Dec; 22(2):339-42; discussion 343-6. PubMed ID: 1812368
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-containing components in medicinal plants. III. Manganese-containing components in Theae folium as oral magnetic resonance imaging contrast materials.
    Mino Y; Yamada K; Takeda T; Nagasawa O
    Chem Pharm Bull (Tokyo); 1996 Dec; 44(12):2305-8. PubMed ID: 8996861
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging.
    Werner EJ; Datta A; Jocher CJ; Raymond KN
    Angew Chem Int Ed Engl; 2008; 47(45):8568-80. PubMed ID: 18825758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies.
    Henig J; Tóth E; Engelmann J; Gottschalk S; Mayer HA
    Inorg Chem; 2010 Jul; 49(13):6124-38. PubMed ID: 20527901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Paramagnetic contrast agents in nuclear magnetic resonance medical imaging.
    Mendonça-Dias MH; Gaggelli E; Lauterbur PC
    Semin Nucl Med; 1983 Oct; 13(4):364-76. PubMed ID: 6359418
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ParaCEST MRI contrast agents capable of derivatization via"click" chemistry.
    Milne M; Chicas K; Li A; Bartha R; Hudson RH
    Org Biomol Chem; 2012 Jan; 10(2):287-92. PubMed ID: 22069041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Basic principles of MR contrast.
    Nelson KL; Runge VM
    Top Magn Reson Imaging; 1995; 7(3):124-36. PubMed ID: 7654392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current uses of gadolinium chelates for clinical magnetic resonance imaging examination of the liver.
    Low RN
    Top Magn Reson Imaging; 1998 Jun; 9(3):141-66. PubMed ID: 9621404
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.
    Boehm-Sturm P; Haeckel A; Hauptmann R; Mueller S; Kuhl CK; Schellenberger EA
    Radiology; 2018 Feb; 286(2):537-546. PubMed ID: 28880786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect.
    Zhang H; Xie Y
    J Magn Reson; 2007 Feb; 184(2):275-91. PubMed ID: 17123851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy pH responsive contrast agents.
    Pérez-Mayoral E; Negri V; Soler-Padrós J; Cerdán S; Ballesteros P
    Eur J Radiol; 2008 Sep; 67(3):453-8. PubMed ID: 18455343
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Science to Practice: Will Gadolinium Chelates Be Replaced by Iron Chelates in MR Imaging?
    Tweedle MF
    Radiology; 2018 Feb; 286(2):409-411. PubMed ID: 29356647
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis.
    Cheng W; Ping Y; Zhang Y; Chuang KH; Liu Y
    J Healthc Eng; 2013; 4(1):23-45. PubMed ID: 23502248
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamics of paramagnetic agents by off-resonance rotating frame technique.
    Zhang H; Xie Y
    J Magn Reson; 2006 Dec; 183(2):213-27. PubMed ID: 16979920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal Excitation of Gadolinium-Based Contrast Agents Using Spin Resonance.
    Dinger SC; Fridjhon P; Rubin DM
    PLoS One; 2016; 11(6):e0158194. PubMed ID: 27341338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A benzene-core trinuclear GdIII complex: towards the optimization of relaxivity for MRI contrast agent applications at high magnetic field.
    Livramento JB; Helm L; Sour A; O'Neil C; Merbach AE; Tóth E
    Dalton Trans; 2008 Mar; (9):1195-202. PubMed ID: 18283380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.