BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17690230)

  • 1. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis.
    Pointer MA; Carvalho LS; Cowing JA; Bowmaker JK; Hunt DM
    J Exp Biol; 2007 Aug; 210(Pt 16):2829-35. PubMed ID: 17690230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).
    Temple SE; Ramsden SD; Haimberger TJ; Veldhoen KM; Veldhoen NJ; Carter NL; Roth WM; Hawryshyn CW
    J Exp Biol; 2008 Jul; 211(Pt 13):2134-43. PubMed ID: 18552303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments.
    Partridge JC; White EM; Douglas RH
    J Exp Biol; 2006 Jan; 209(Pt 2):314-9. PubMed ID: 16391353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus).
    Jokela-Määttä M; Vartio A; Paulin L; Donner K
    J Exp Biol; 2009 Nov; 212(Pt 21):3415-21. PubMed ID: 19837882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish.
    Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM
    J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
    Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular basis for the evolution of teleost vision].
    Hisatomi O; Tokunaga F
    Tanpakushitsu Kakusan Koso; 2000 Dec; 45(17 Suppl):2924-30. PubMed ID: 11187798
    [No Abstract]   [Full Text] [Related]  

  • 10. Reconstructing the ancestral butterfly eye: focus on the opsins.
    Briscoe AD
    J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora.
    Wakakuwa M; Stavenga DG; Kurasawa M; Arikawa K
    J Exp Biol; 2004 Jul; 207(Pt 16):2803-10. PubMed ID: 15235009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-rod, non-cone photoreception in rodents and teleost fish.
    Foster RG; Hankins M; Lucas RJ; Jenkins A; Muñoz M; Thompson S; Appleford JM; Bellingham J
    Novartis Found Symp; 2003; 253():3-23; discussion 23-30, 52-5, 102-9. PubMed ID: 14712912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
    Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP
    FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri.
    Shand J; Davies WL; Thomas N; Balmer L; Cowing JA; Pointer M; Carvalho LS; Trezise AE; Collin SP; Beazley LD; Hunt DM
    J Exp Biol; 2008 May; 211(Pt 9):1495-503. PubMed ID: 18424684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes.
    Hope AJ; Partridge JC; Dulai KS; Hunt DM
    Proc Biol Sci; 1997 Feb; 264(1379):155-63. PubMed ID: 9061967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes.
    Mohun SM; Davies WL; Bowmaker JK; Pisani D; Himstedt W; Gower DJ; Hunt DM; Wilkinson M
    J Exp Biol; 2010 Oct; 213(Pt 20):3586-92. PubMed ID: 20889838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-sea and pelagic rod visual pigments identified in the mysticete whales.
    Bischoff N; Nickle B; Cronin TW; Velasquez S; Fasick JI
    Vis Neurosci; 2012 Mar; 29(2):95-103. PubMed ID: 22414424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish.
    Hunt DM; Dulai KS; Partridge JC; Cottrill P; Bowmaker JK
    J Exp Biol; 2001 Oct; 204(Pt 19):3333-44. PubMed ID: 11606607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision using multiple distinct rod opsins in deep-sea fishes.
    Musilova Z; Cortesi F; Matschiner M; Davies WIL; Patel JS; Stieb SM; de Busserolles F; Malmstrøm M; Tørresen OK; Brown CJ; Mountford JK; Hanel R; Stenkamp DL; Jakobsen KS; Carleton KL; Jentoft S; Marshall J; Salzburger W
    Science; 2019 May; 364(6440):588-592. PubMed ID: 31073066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes).
    Matsumoto Y; Fukamachi S; Mitani H; Kawamura S
    Gene; 2006 Apr; 371(2):268-78. PubMed ID: 16460888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.