These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 17690414)

  • 41. Dynamic transmission of West Nile virus across the United States-Mexican border.
    Mann BR; McMullen AR; Guzman H; Tesh RB; Barrett AD
    Virology; 2013 Feb; 436(1):75-80. PubMed ID: 23141421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. West Nile virus survives winter; no surprise, says CDC.
    Nolen RS
    J Am Vet Med Assoc; 2000 Apr; 216(8):1199-1200. PubMed ID: 10896507
    [No Abstract]   [Full Text] [Related]  

  • 43. Isolation of West Nile virus from Culex fatigans mosquitoes from western India. Indian J Med Res 53:6, June 1965.
    Pavri KM; Singh KR
    Indian J Med Res; 2013 Jan; 137(1):220. PubMed ID: 23596671
    [No Abstract]   [Full Text] [Related]  

  • 44. West Nile: worldwide current situation in animals and humans.
    Dauphin G; Zientara S; Zeller H; Murgue B
    Comp Immunol Microbiol Infect Dis; 2004 Sep; 27(5):343-55. PubMed ID: 15225984
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vector competence of three North American strains of Aedes albopictus for West Nile virus.
    Sardelis MR; Turell MJ; O'Guinn ML; Andre RG; Roberts DR
    J Am Mosq Control Assoc; 2002 Dec; 18(4):284-9. PubMed ID: 12542184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Study of the possibilities of contamination and transmission by the mosquitoes Culex pipiens f. molestus Fors, a pathogen of West Nile fever].
    Tikhonova IuIu; Ushakova TP; Grabarev PA; Iakovlev ÉA
    Med Parazitol (Mosk); 2011; (1):38-40. PubMed ID: 21476256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fine-scale genetic variation and evolution of West Nile Virus in a transmission "hot spot" in suburban Chicago, USA.
    Bertolotti L; Kitron UD; Walker ED; Ruiz MO; Brawn JD; Loss SR; Hamer GL; Goldberg TL
    Virology; 2008 May; 374(2):381-9. PubMed ID: 18261758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of arbovirus vector infection rates using variable size pooling.
    Gu W; Lampman R; Novak RJ
    Med Vet Entomol; 2004 Jun; 18(2):200-4. PubMed ID: 15189246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mosquito saliva causes enhancement of West Nile virus infection in mice.
    Styer LM; Lim PY; Louie KL; Albright RG; Kramer LD; Bernard KA
    J Virol; 2011 Feb; 85(4):1517-27. PubMed ID: 21147918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long term impacts of combined sewer overflow remediation on water quality and population dynamics of Culex quinquefasciatus, the main urban West Nile virus vector in Atlanta, GA.
    Lund A; McMillan J; Kelly R; Jabbarzadeh S; Mead DG; Burkot TR; Kitron U; Vazquez-Prokopec GM
    Environ Res; 2014 Feb; 129():20-6. PubMed ID: 24528998
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Zoonosis update: West Nile virus.
    Trevejo RT; Eidson M
    J Am Vet Med Assoc; 2008 May; 232(9):1302-9. PubMed ID: 18447774
    [No Abstract]   [Full Text] [Related]  

  • 52. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity.
    Rochlin I; Ginsberg HS; Campbell SR
    Am J Trop Med Hyg; 2009 Apr; 80(4):661-8. PubMed ID: 19346396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Poor replication of West Nile virus (New York 1999 strain) in three reptilian and one amphibian species.
    Klenk K; Komar N
    Am J Trop Med Hyg; 2003 Sep; 69(3):260-2. PubMed ID: 14628941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens.
    Kilpatrick AM; Kramer LD; Jones MJ; Marra PP; Daszak P; Fonseca DM
    Am J Trop Med Hyg; 2007 Oct; 77(4):667-71. PubMed ID: 17978068
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental studies on the vector potential of certain Culex species to West Nile virus.
    Ilkal MA; Mavale MS; Prasanna Y; Jacob PG; Geevarghese G; Banerjee K
    Indian J Med Res; 1997 Sep; 106():225-8. PubMed ID: 9378528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of a small plaque variant of West Nile virus isolated in New York in 2000.
    Jia Y; Moudy RM; Dupuis AP; Ngo KA; Maffei JG; Jerzak GV; Franke MA; Kauffman EB; Kramer LD
    Virology; 2007 Oct; 367(2):339-47. PubMed ID: 17617432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parameters of Mosquito-Enhanced West Nile Virus Infection.
    Moser LA; Lim PY; Styer LM; Kramer LD; Bernard KA
    J Virol; 2016 Jan; 90(1):292-9. PubMed ID: 26468544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility.
    Brault AC
    Vet Res; 2009; 40(2):43. PubMed ID: 19406093
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Migratory birds modeled as critical transport agents for West Nile Virus in North America.
    Peterson AT; Vieglais DA; Andreasen JK
    Vector Borne Zoonotic Dis; 2003; 3(1):27-37. PubMed ID: 12804378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparing competitive fitness of West Nile virus strains in avian and mosquito hosts.
    Worwa G; Wheeler SS; Brault AC; Reisen WK
    PLoS One; 2015; 10(5):e0125668. PubMed ID: 25965850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.