These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17690872)

  • 1. Head pitch affects muscle activity in the decerebrate cat hindlimb during walking.
    Gottschall JS; Nichols TR
    Exp Brain Res; 2007 Sep; 182(1):131-5. PubMed ID: 17690872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking.
    Carlson-Kuhta P; Trank TV; Smith JL
    J Neurophysiol; 1998 Apr; 79(4):1687-701. PubMed ID: 9535939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected motor patterns for hindlimb muscles during slope walking in the cat.
    Smith JL; Carlson-Kuhta P
    J Neurophysiol; 1995 Nov; 74(5):2211-5. PubMed ID: 8592212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
    Donelan JM; Pearson KG
    J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sartorius muscle afferents influence the amplitude and timing of flexor activity in walking decerebrate cats.
    Lam T; Pearson KG
    Exp Brain Res; 2002 Nov; 147(2):175-85. PubMed ID: 12410332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of self-reinnervation of cat medial and lateral gastrocnemius muscles on hindlimb kinematics in slope walking.
    Maas H; Prilutsky BI; Nichols TR; Gregor RJ
    Exp Brain Res; 2007 Aug; 181(2):377-93. PubMed ID: 17406860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3625-39. PubMed ID: 12944536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attributes of quiet stance in the chronic spinal cat.
    Fung J; Macpherson JM
    J Neurophysiol; 1999 Dec; 82(6):3056-65. PubMed ID: 10601441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force regulation of ankle extensor muscle activity in freely walking cats.
    Donelan JM; McVea DA; Pearson KG
    J Neurophysiol; 2009 Jan; 101(1):360-71. PubMed ID: 19019974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying the nervous system under physiological conditions. Focus on "contribution of force feedback to ankle extensor activity in decerebrate walking cats".
    Cattaert D
    J Neurophysiol; 2004 Oct; 92(4):1967-8. PubMed ID: 15381737
    [No Abstract]   [Full Text] [Related]  

  • 11. Functional role of muscle reflexes for force generation in the decerebrate walking cat.
    Stein RB; Misiaszek JE; Pearson KG
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):781-91. PubMed ID: 10856129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Interrelation of the kinematics of hindlimb movement and efferent activity in the decerebrate cat during scratching].
    Esipenko VB
    Neirofiziologiia; 1987; 19(4):525-33. PubMed ID: 3658041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.
    Bolton DA; Misiaszek JE
    J Neurophysiol; 2012 Dec; 108(11):3034-42. PubMed ID: 22972967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].
    Musienko PE; Gorskiĭ OV; Kilimnik VA; Kozlovskaia IB; Courtine G; Edgerton VR; Gerasimenko IuP
    Ross Fiziol Zh Im I M Sechenova; 2013 Mar; 99(3):392-405. PubMed ID: 23789442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromyographic activity of m. longissimus and the kinematics of the vertebral column during level and downslope treadmill walking in cats.
    Wada N; Miyajima N; Akatani J; Shimojo K; Kanda K
    Brain Res; 2006 Aug; 1103(1):140-4. PubMed ID: 16781688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study.
    Markin SN; Lemay MA; Prilutsky BI; Rybak IA
    J Neurophysiol; 2012 Apr; 107(8):2057-71. PubMed ID: 22190626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
    Misiaszek JE
    J Neurophysiol; 2006 Oct; 96(4):1816-28. PubMed ID: 16823027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of lateral stability during standing and walking in the cat.
    Karayannidou A; Zelenin PV; Orlovsky GN; Sirota MG; Beloozerova IN; Deliagina TG
    J Neurophysiol; 2009 Jan; 101(1):8-19. PubMed ID: 19004997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses.
    McVea DA; Pearson KG
    J Neurophysiol; 2007 Jan; 97(1):659-69. PubMed ID: 17108090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.