These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17690872)

  • 21. Unexpected Fascicle Length Changes In Denervated Feline Soleus Muscle During Stance Phase Of Walking.
    Mehta R; Maas H; Gregor RJ; Prilutsky BI
    Sci Rep; 2015 Dec; 5():17619. PubMed ID: 26635206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Relation between parameters of efferent activity and limb position during fictive scratching in the decerebrate cat].
    Shimanskiĭ IuP; Baev KV
    Neirofiziologiia; 1986; 18(5):636-45. PubMed ID: 3774066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polysynaptic pathways from high threshold muscle afferents innervating hindlimb muscles to tail motoneurons in the spinalized cat.
    Wada N; Sugita S; Hirao A; Tokuriki M
    Arch Ital Biol; 1996 Mar; 134(2):191-5. PubMed ID: 8741226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations.
    Honeycutt CF; Gottschall JS; Nichols TR
    J Neurophysiol; 2009 Jun; 101(6):2751-61. PubMed ID: 19321638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord.
    Gerasimenko YP; Lavrov IA; Bogacheva IN; Shcherbakova NA; Kucher VI; Musienko PE
    Neurosci Behav Physiol; 2005 Mar; 35(3):291-8. PubMed ID: 15875491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition.
    Krouchev N; Kalaska JF; Drew T
    J Neurophysiol; 2006 Oct; 96(4):1991-2010. PubMed ID: 16823029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Restructuring of the efferent activity of the scratching generator due to cyclic shifting of the position of the hindlimb in the decerebrate immobilized cat].
    Shimanskiĭ IuP
    Neirofiziologiia; 1987; 19(4):443-9. PubMed ID: 3658036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns.
    Gregor RJ; Smith DW; Prilutsky BI
    J Neurophysiol; 2006 Mar; 95(3):1397-409. PubMed ID: 16207777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Body stability and muscle and motor cortex activity during walking with wide stance.
    Farrell BJ; Bulgakova MA; Beloozerova IN; Sirota MG; Prilutsky BI
    J Neurophysiol; 2014 Aug; 112(3):504-24. PubMed ID: 24790167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An anatomical and functional analysis of cat biceps femoris and semitendinosus muscles.
    English AW; Weeks OI
    J Morphol; 1987 Feb; 191(2):161-75. PubMed ID: 3560234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3640-53. PubMed ID: 12944535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.
    Garnier C; Falempin M; Canu MH
    Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electromyographic and kinematic analysis of graded treadmill walking and the implications for knee rehabilitation.
    Lange GW; Hintermeister RA; Schlegel T; Dillman CJ; Steadman JR
    J Orthop Sports Phys Ther; 1996 May; 23(5):294-301. PubMed ID: 8728527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forward Stepping Evoked by Transvertebral Stimulation in the Decerebrate Cat.
    Lyakhovetskii V; Shkorbatova P; Gorskii O; Musienko P
    Neuromodulation; 2024 Jun; 27(4):625-635. PubMed ID: 36567242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.
    Bretzner F; Drew T
    J Neurophysiol; 2005 Jul; 94(1):657-72. PubMed ID: 15788518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebellar control of locomotion: effects of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats.
    Udo M; Matsukawa K; Kamei H; Oda Y
    J Neurophysiol; 1980 Jul; 44(1):119-34. PubMed ID: 7420131
    [No Abstract]   [Full Text] [Related]  

  • 37. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.
    Wada N; Akatani J; Miyajima N; Shimojo K; Kanda K
    Brain Res; 2006 May; 1090(1):99-109. PubMed ID: 16682013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.
    Frigon A; Thibaudier Y; Hurteau MF
    Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of slope and sciatic nerve injury on ankle muscle recruitment and hindlimb kinematics during walking in the rat.
    Sabatier MJ; To BN; Nicolini J; English AW
    J Exp Biol; 2011 Mar; 214(Pt 6):1007-16. PubMed ID: 21346129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting.
    Fujiki S; Aoi S; Funato T; Sato Y; Tsuchiya K; Yanagihara D
    Sci Rep; 2018 Nov; 8(1):17341. PubMed ID: 30478405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.