These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 17691091)
1. A practical synthesis of the phytosiderophore 2'-deoxymugineic acid: a key to the mechanistic study of iron acquisition by graminaceous plants. Namba K; Murata Y; Horikawa M; Iwashita T; Kusumoto S Angew Chem Int Ed Engl; 2007; 46(37):7060-3. PubMed ID: 17691091 [No Abstract] [Full Text] [Related]
2. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Nozoye T; Nagasaka S; Kobayashi T; Takahashi M; Sato Y; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2011 Feb; 286(7):5446-54. PubMed ID: 21156806 [TBL] [Abstract][Full Text] [Related]
3. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Koike S; Inoue H; Mizuno D; Takahashi M; Nakanishi H; Mori S; Nishizawa NK Plant J; 2004 Aug; 39(3):415-24. PubMed ID: 15255870 [TBL] [Abstract][Full Text] [Related]
4. Toward mechanistic elucidation of iron acquisition in barley: efficient synthesis of mugineic acids and their transport activities. Namba K; Murata Y Chem Rec; 2010 Apr; 10(2):140-50. PubMed ID: 20354995 [TBL] [Abstract][Full Text] [Related]
5. Mugineic acid derivatives as molecular probes for the mechanistic elucidation of iron acquisition in barley. Namba K; Kobayashi K; Murata Y; Hirakawa H; Yamagaki T; Iwashita T; Nishizawa M; Kusumoto S; Tanino K Angew Chem Int Ed Engl; 2010 Dec; 49(51):9956-9. PubMed ID: 21108292 [No Abstract] [Full Text] [Related]
6. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice. Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636 [TBL] [Abstract][Full Text] [Related]
7. Organic Chemistry Research on the Mechanistic Elucidation of Iron Acquisition in Barley. Namba K; Murata Y Biol Pharm Bull; 2018; 41(10):1502-1507. PubMed ID: 30270318 [TBL] [Abstract][Full Text] [Related]
8. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Aoyama T; Kobayashi T; Takahashi M; Nagasaka S; Usuda K; Kakei Y; Ishimaru Y; Nakanishi H; Mori S; Nishizawa NK Plant Mol Biol; 2009 Aug; 70(6):681-92. PubMed ID: 19468840 [TBL] [Abstract][Full Text] [Related]
9. Anion exchange liquid chromatography--inductively coupled plasma-mass spectrometry detection of the Co2+, Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid. Bakkaus E; Collins RN; Morel JL; Gouget B J Chromatogr A; 2006 Oct; 1129(2):208-15. PubMed ID: 16876808 [TBL] [Abstract][Full Text] [Related]
10. Revisiting the metal-binding chemistry of nicotianamine and 2'-deoxymugineic acid. Implications for iron nutrition in strategy II plants. Reichman SM; Parker DR Plant Physiol; 2002 Aug; 129(4):1435-8. PubMed ID: 12177457 [No Abstract] [Full Text] [Related]
11. A novel barley yellow stripe 1-like transporter (HvYSL2) localized to the root endodermis transports metal-phytosiderophore complexes. Araki R; Murata J; Murata Y Plant Cell Physiol; 2011 Nov; 52(11):1931-40. PubMed ID: 21937676 [TBL] [Abstract][Full Text] [Related]
12. [Responses to iron-deficiency stress by graminaceous plants]. Itai RN; Nishizawa NK Tanpakushitsu Kakusan Koso; 2007 May; 52(6 Suppl):606-11. PubMed ID: 17566362 [No Abstract] [Full Text] [Related]
13. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). von Wirén N; Khodr H; Hider RC Plant Physiol; 2000 Nov; 124(3):1149-58. PubMed ID: 11080292 [TBL] [Abstract][Full Text] [Related]
14. Development of a mugineic acid family phytosiderophore analog as an iron fertilizer. Suzuki M; Urabe A; Sasaki S; Tsugawa R; Nishio S; Mukaiyama H; Murata Y; Masuda H; Aung MS; Mera A; Takeuchi M; Fukushima K; Kanaki M; Kobayashi K; Chiba Y; Shrestha BB; Nakanishi H; Watanabe T; Nakayama A; Fujino H; Kobayashi T; Tanino K; Nishizawa NK; Namba K Nat Commun; 2021 Mar; 12(1):1558. PubMed ID: 33692352 [TBL] [Abstract][Full Text] [Related]
15. Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Weber G; von Wirén N; Hayen H Biometals; 2008 Oct; 21(5):503-13. PubMed ID: 18322653 [TBL] [Abstract][Full Text] [Related]
16. Phytosiderophores revisited: 2'-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings. Araki R; Namba K; Murata Y; Murata J Plant Signal Behav; 2015; 10(6):e1031940. PubMed ID: 26023724 [TBL] [Abstract][Full Text] [Related]
17. A Unified Approach to Phytosiderophore Natural Products. Kratena N; Gökler T; Maltrovsky L; Oburger E; Stanetty C Chemistry; 2021 Jan; 27(2):577-580. PubMed ID: 32897577 [TBL] [Abstract][Full Text] [Related]
18. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. Schaaf G; Ludewig U; Erenoglu BE; Mori S; Kitahara T; von Wirén N J Biol Chem; 2004 Mar; 279(10):9091-6. PubMed ID: 14699112 [TBL] [Abstract][Full Text] [Related]
19. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. Inoue H; Kobayashi T; Nozoye T; Takahashi M; Kakei Y; Suzuki K; Nakazono M; Nakanishi H; Mori S; Nishizawa NK J Biol Chem; 2009 Feb; 284(6):3470-9. PubMed ID: 19049971 [TBL] [Abstract][Full Text] [Related]
20. CE of phytosiderophores and related metal species in plants. Xuan Y; Scheuermann EB; Meda AR; Jacob P; von Wirén N; Weber G Electrophoresis; 2007 Oct; 28(19):3507-19. PubMed ID: 17768721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]