These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17691345)

  • 1. Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays.
    Li J; Andrews RJ
    Acta Neurochir Suppl; 2007; 97(Pt 2):537-45. PubMed ID: 17691345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotection at the nanolevel--Part II: Nanodevices for neuromodulation--deep brain stimulation and spinal cord injury.
    Andrews RJ
    Ann N Y Acad Sci; 2007 Dec; 1122():185-96. PubMed ID: 18077573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.
    Huang WC; Lo YC; Chu CY; Lai HY; Chen YY; Chen SY
    Biomaterials; 2017 Apr; 122():141-153. PubMed ID: 28119154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chapter 7 - Neuromodulation: Deep brain stimulation, sensory neuroprostheses, and the neural-electrical interface.
    Andrews RJ
    Prog Brain Res; 2009; 180():127-39. PubMed ID: 20302832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop cortical neuromodulation in Parkinson's disease: An alternative to deep brain stimulation?
    Beuter A; Lefaucheur JP; Modolo J
    Clin Neurophysiol; 2014 May; 125(5):874-85. PubMed ID: 24555921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microelectrode Guided Implantation of Electrodes into the Subthalamic Nucleus of Rats for Long-term Deep Brain Stimulation.
    Fluri F; Bieber M; Volkmann J; Kleinschnitz C
    J Vis Exp; 2015 Oct; (104):. PubMed ID: 26485522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromodulation: advances in the next decade.
    Andrews RJ
    Ann N Y Acad Sci; 2010 Jun; 1199():212-20. PubMed ID: 20633127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromodulation: advances in the next five years.
    Andrews RJ
    Ann N Y Acad Sci; 2010 Jun; 1199():204-11. PubMed ID: 20633126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial steering of deep brain stimulation volumes using a novel lead design.
    Martens HCF; Toader E; Decré MMJ; Anderson DJ; Vetter R; Kipke DR; Baker KB; Johnson MD; Vitek JL
    Clin Neurophysiol; 2011 Mar; 122(3):558-566. PubMed ID: 20729143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human central nervous system circuits examined through the electrodes implanted for deep brain stimulation.
    Valls-Solé J; Compta Y; Costa J; Valldeoriola F; Rumià J
    Clin Neurophysiol; 2008 Jun; 119(6):1219-31. PubMed ID: 18308626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-Loop neuromodulation for clustering neuronal populations.
    Faramarzi S; Netoff TI
    J Neurophysiol; 2021 Jan; 125(1):248-255. PubMed ID: 33296614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-loop control of deep brain stimulation: a simulation study.
    Santaniello S; Fiengo G; Glielmo L; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):15-24. PubMed ID: 20889437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Lead Design for Modulation and Sensing of Deep Brain Structures.
    Connolly AT; Vetter RJ; Hetke JF; Teplitzky BA; Kipke DR; Pellinen DS; Anderson DJ; Baker KB; Vitek JL; Johnson MD
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):148-57. PubMed ID: 26529747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo.
    Gong CS; Lai HY; Huang SH; Lo YC; Lee N; Chen PY; Tu PH; Yang CY; Lin JC; Chen YY
    Sensors (Basel); 2015 May; 15(6):12700-19. PubMed ID: 26029954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the stimulus waveforms generated by implantable pulse generators for deep brain stimulation.
    Lempka SF; Howell B; Gunalan K; Machado AG; McIntyre CC
    Clin Neurophysiol; 2018 Apr; 129(4):731-742. PubMed ID: 29448149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic implantation of deep brain stimulation leads in animal models of neurological disorders.
    Elder CM; Hashimoto T; Zhang J; Vitek JL
    J Neurosci Methods; 2005 Mar; 142(1):11-6. PubMed ID: 15652612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.