These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 176915)
1. Role of ionophores in energy coupling. Green DE Ann N Y Acad Sci; 1975 Dec; 264():61-82. PubMed ID: 176915 [TBL] [Abstract][Full Text] [Related]
2. Paired moving charges in mitochondrial energy coupling. II. Universality of the principles for energy coupling in biological systems. Green E; Reible S Proc Natl Acad Sci U S A; 1975 Jan; 72(1):253-7. PubMed ID: 123335 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanism of mitochondrial energy coupling. Green DE; Blondin GA Bioscience; 1978 Jan; 28(1):18-24. PubMed ID: 340294 [No Abstract] [Full Text] [Related]
4. The electromechanochemical model for energy coupling in mitochondria. Green DE Biochim Biophys Acta; 1974 Apr; 346(1):27-78. PubMed ID: 4151654 [No Abstract] [Full Text] [Related]
5. Paired moving charge model of energy coupling. III. Intrinsic ionophores in energy coupling systems. Green DE; Blondin G; Kessler R; Southard JH Proc Natl Acad Sci U S A; 1975 Mar; 72(3):896-900. PubMed ID: 1055388 [TBL] [Abstract][Full Text] [Related]
6. Paired moving charges in mitochondrial energy coupling. Green DE; Reible S Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4850-4. PubMed ID: 4531024 [TBL] [Abstract][Full Text] [Related]
7. The physical aspects of energy transduction in biological systems. Blumenfeld LA Q Rev Biophys; 1978 Aug; 11(3):251-308. PubMed ID: 223188 [No Abstract] [Full Text] [Related]
8. Transport of protons across membranes by weak acids. McLaughlin SG; Dilger JP Physiol Rev; 1980 Jul; 60(3):825-63. PubMed ID: 6248908 [No Abstract] [Full Text] [Related]
10. [Oxidative phosphorylation--structure and function (author's transl)]. Kagawa Y; Sone N; Hirata H; Yoshida M Tanpakushitsu Kakusan Koso; 1975 Mar; 20(4):318-51. PubMed ID: 169549 [No Abstract] [Full Text] [Related]
11. [The role of membrane phospholipids in oxidative phosphorylation. A hypothesis of LC-coupling]. Dmitriev LF Mol Biol (Mosk); 1985; 19(4):1001-10. PubMed ID: 4047030 [TBL] [Abstract][Full Text] [Related]
12. [Mechanism of oxidative phosphorylation and general principles of bioenergetics]. Skulachev VP Usp Sovrem Biol; 1974 Mar; 77(2):125-54. PubMed ID: 4152071 [No Abstract] [Full Text] [Related]
13. On the nature of the mechanism of oxidative phosphorylation in mitochondria: a model and supportive evidence. Valdivia E Physiol Chem Phys; 1972; 4(4):317-24. PubMed ID: 4681767 [No Abstract] [Full Text] [Related]
14. Isolation of ionophores from ion transport systems and their role in energy transduction. Shamoo AE; Goldstein DA Biochim Biophys Acta; 1977 May; 472(1):13-53. PubMed ID: 141944 [No Abstract] [Full Text] [Related]
15. [Natural ionophores and their role in ion transport through membranes]. Shamu AE; Kherrman TR Usp Sovrem Biol; 1981; 91(3):350-65. PubMed ID: 6117159 [No Abstract] [Full Text] [Related]
16. Thyroid thermogenesis. Edelman IS N Engl J Med; 1974 Jun; 290(23):1303-8. PubMed ID: 4363889 [No Abstract] [Full Text] [Related]
17. Mitochondrial energetic metabolism-some general principles. Mazat JP; Ransac S; Heiske M; Devin A; Rigoulet M IUBMB Life; 2013 Mar; 65(3):171-9. PubMed ID: 23441039 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of a potassium specific ionophore from Streptococcus faecalis. Kanne R Z Naturforsch C Biosci; 1977; 32(11-12):926-8. PubMed ID: 146354 [TBL] [Abstract][Full Text] [Related]
19. Energy coupling in mitochondria. Komai H; Hunter DR; Green DE Ann N Y Acad Sci; 1974 Feb; 227():175-8. PubMed ID: 4524334 [No Abstract] [Full Text] [Related]
20. The principle of energy transduction in the cytochrome c oxidase region of the respiratory chain. Wikström MK Ann N Y Acad Sci; 1974 Feb; 227():146-58. PubMed ID: 4363923 [No Abstract] [Full Text] [Related] [Next] [New Search]