These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 17691831)
1. Exploring novel function of yeast Ssa1/2p by quantitative profiling proteomics using NanoESI-LC-MS/MS. Matsumoto R; Nam HW; Agrawal GK; Kim YS; Iwahashi H; Rakwal R J Proteome Res; 2007 Sep; 6(9):3465-74. PubMed ID: 17691831 [TBL] [Abstract][Full Text] [Related]
2. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. Matsumoto R; Akama K; Rakwal R; Iwahashi H BMC Genomics; 2005 Oct; 6():141. PubMed ID: 16209719 [TBL] [Abstract][Full Text] [Related]
3. Search for novel stress-responsive protein components using a yeast mutant lacking two cytosolic Hsp70 genes, SSA1 and SSA2. Matsumoto R; Rakwal R; Agrawal GK; Jung YH; Jwa NS; Yonekura M; Iwahashi H; Akama K Mol Cells; 2006 Jun; 21(3):381-8. PubMed ID: 16819301 [TBL] [Abstract][Full Text] [Related]
4. Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. Serva S; Nagy PD J Virol; 2006 Mar; 80(5):2162-9. PubMed ID: 16474124 [TBL] [Abstract][Full Text] [Related]
5. Amino acid residue specific stable isotope labeling for quantitative proteomics. Zhu H; Pan S; Gu S; Bradbury EM; Chen X Rapid Commun Mass Spectrom; 2002; 16(22):2115-23. PubMed ID: 12415544 [TBL] [Abstract][Full Text] [Related]
6. The physiological role of CPR1 in Saccharomyces cerevisiae KNU5377 against menadione stress by proteomics. Kim IS; Yun HS; Kwak SH; Jin IN J Microbiol; 2007 Aug; 45(4):326-32. PubMed ID: 17846586 [TBL] [Abstract][Full Text] [Related]
7. The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation. Bush GL; Meyer DI J Cell Biol; 1996 Dec; 135(5):1229-37. PubMed ID: 8947547 [TBL] [Abstract][Full Text] [Related]
8. [URE3] prion propagation is abolished by a mutation of the primary cytosolic Hsp70 of budding yeast. Roberts BT; Moriyama H; Wickner RB Yeast; 2004 Jan; 21(2):107-17. PubMed ID: 14755636 [TBL] [Abstract][Full Text] [Related]
9. Comparative temporal proteomics of a response regulator (SO2426)-deficient strain and wild-type Shewanella oneidensis MR-1 during chromate transformation. Chourey K; Thompson MR; Shah M; Zhang B; Verberkmoes NC; Thompson DK; Hettich RL J Proteome Res; 2009 Jan; 8(1):59-71. PubMed ID: 19118451 [TBL] [Abstract][Full Text] [Related]
11. The protein chaperone Ssa1 affects mRNA localization to the mitochondria. Eliyahu E; Lesnik C; Arava Y FEBS Lett; 2012 Jan; 586(1):64-9. PubMed ID: 22138184 [TBL] [Abstract][Full Text] [Related]
12. The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase. Juretschke J; Menssen R; Sickmann A; Wolf DH Biochem Biophys Res Commun; 2010 Jul; 397(3):447-52. PubMed ID: 20513352 [TBL] [Abstract][Full Text] [Related]
13. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas. Joseph R; Srivastava OP; Pfister RR Exp Eye Res; 2011 Apr; 92(4):282-98. PubMed ID: 21281627 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production. Seo HY; Chang YJ; Chung YJ; Kim KS J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096 [TBL] [Abstract][Full Text] [Related]
15. Development and application of proteomics technologies in Saccharomyces cerevisiae. Kolkman A; Slijper M; Heck AJ Trends Biotechnol; 2005 Dec; 23(12):598-604. PubMed ID: 16202464 [TBL] [Abstract][Full Text] [Related]
16. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. Bouchal P; Roumeliotis T; Hrstka R; Nenutil R; Vojtesek B; Garbis SD J Proteome Res; 2009 Jan; 8(1):362-73. PubMed ID: 19053527 [TBL] [Abstract][Full Text] [Related]
17. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Lin FM; Tan Y; Yuan YJ Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894 [TBL] [Abstract][Full Text] [Related]
18. [Gene expression profiles and proteomics analysis of the cell transfected with the mutant type of COOH-terminal deleted of hepatitis B virus X]. Liu XH; Chen Y; Wang L; Zhao HH; Zhu MH Zhonghua Yi Xue Za Zhi; 2005 Dec; 85(48):3425-9. PubMed ID: 16409865 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous proteomic profiling of four different growth states of human fibroblasts, using amine-reactive isobaric tagging reagents and tandem mass spectrometry. Cong YS; Fan E; Wang E Mech Ageing Dev; 2006 Apr; 127(4):332-43. PubMed ID: 16434083 [TBL] [Abstract][Full Text] [Related]
20. Quantitative proteome analysis of cisplatin-induced apoptotic Jurkat T cells by stable isotope labeling with amino acids in cell culture, SDS-PAGE, and LC-MALDI-TOF/TOF MS. Schmidt F; Hustoft HK; Strozynski M; Dimmler C; Rudel T; Thiede B Electrophoresis; 2007 Dec; 28(23):4359-68. PubMed ID: 17987630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]