BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17691887)

  • 1. Microarrays for rapid identification of plant viruses.
    Boonham N; Tomlinson J; Mumford R
    Annu Rev Phytopathol; 2007; 45():307-28. PubMed ID: 17691887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex detection of plant pathogens through the Luminex MagPlex bead system.
    van der Vlugt RA; van Raaij H; de Weerdt M; Bergervoet JH
    Methods Mol Biol; 2015; 1302():283-99. PubMed ID: 25981262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of viral infections by an oligonucleotide microarray.
    Sip M; Bystricka D; Kmoch S; Noskova L; Hartmannova H; Dedic P
    J Virol Methods; 2010 Apr; 165(1):64-70. PubMed ID: 20100517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligonucleotide-based microarray: a new improvement in microarray detection of plant viruses.
    Bystricka D; Lenz O; Mraz I; Piherova L; Kmoch S; Sip M
    J Virol Methods; 2005 Sep; 128(1-2):176-82. PubMed ID: 15927276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virus infections in wild plant populations are both frequent and often unapparent.
    Prendeville HR; Ye X; Morris TJ; Pilson D
    Am J Bot; 2012 Jun; 99(6):1033-42. PubMed ID: 22645099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA microarray: parallel detection of potato viruses.
    Bystrická D; Lenz O; Mráz I; Dĕdic P; Síp M
    Acta Virol; 2003; 47(1):41-4. PubMed ID: 12828343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods in virus diagnostics: from ELISA to next generation sequencing.
    Boonham N; Kreuze J; Winter S; van der Vlugt R; Bergervoet J; Tomlinson J; Mumford R
    Virus Res; 2014 Jun; 186():20-31. PubMed ID: 24361981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification-free detection of grapevine viruses using an oligonucleotide microarray.
    Abdullahi I; Gryshan Y; Rott M
    J Virol Methods; 2011 Dec; 178(1-2):1-15. PubMed ID: 21820011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of diagnostic parameters of advanced serological and molecular tissue-print methods for detection of Citrus tristeza virus: a model for other plant pathogens.
    Vidal E; Yokomi RK; Moreno A; Bertolini E; Cambra M
    Phytopathology; 2012 Jan; 102(1):114-21. PubMed ID: 21879789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of low-density arrays, RT-PCR and real-time TaqMan RT-PCR in detection of grapevine viruses.
    Osman F; Leutenegger C; Golino D; Rowhani A
    J Virol Methods; 2008 May; 149(2):292-9. PubMed ID: 18329731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray platform for the detection of a range of plant viruses and viroids.
    Adams I; Harrison C; Tomlinson J; Boonham N
    Methods Mol Biol; 2015; 1302():273-82. PubMed ID: 25981261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple, sensitive, specific detection of mixed infection of multiple plant viruses using macroarray and microtube hybridization.
    Sugiyama S; Masuta C; Sekiguchi H; Uehara T; Shimura H; Maruta Y
    J Virol Methods; 2008 Nov; 153(2):241-4. PubMed ID: 18760308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocapture-PCR for plant virus detection.
    Mulholland V
    Methods Mol Biol; 2009; 508():183-92. PubMed ID: 19301756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Next-Generation Sequencing Versus Biological Indexing for the Optimal Detection of Viral Pathogens in Grapevine.
    Al Rwahnih M; Daubert S; Golino D; Islas C; Rowhani A
    Phytopathology; 2015 Jun; 105(6):758-63. PubMed ID: 25689518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of a novel DNA virus with the grapevine vein-clearing and vine decline syndrome.
    Zhang Y; Singh K; Kaur R; Qiu W
    Phytopathology; 2011 Sep; 101(9):1081-90. PubMed ID: 21554183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray immunoassay for the detection of grapevine and tree fruit viruses.
    Abdullahi I; Rott M
    J Virol Methods; 2009 Sep; 160(1-2):90-100. PubMed ID: 19410603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-automated and highly sensitive streptavidin magnetic capture-hybridization RT-PCR assay: application to genus-wide or species-specific detection of several viruses of ornamental bulb crops.
    Miglino R; Jodlowska A; Pappu HR; van Schadewijk TR
    J Virol Methods; 2007 Dec; 146(1-2):155-64. PubMed ID: 17673303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid and effective RNA release procedure for virus detection in woody plants by reverse transcription-polymerase chain reaction.
    Kundu JK
    Acta Virol; 2003; 47(3):147-51. PubMed ID: 14658842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants.
    Dai J; Cheng J; Huang T; Zheng X; Wu Y
    J Virol Methods; 2012 Jul; 183(1):57-62. PubMed ID: 22484613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR.
    Agindotan BO; Shiel PJ; Berger PH
    J Virol Methods; 2007 Jun; 142(1-2):1-9. PubMed ID: 17276522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.