These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 17692074)
1. Rapid reduction of arsenate in the medium mediated by plant roots. Xu XY; McGrath SP; Zhao FJ New Phytol; 2007; 176(3):590-599. PubMed ID: 17692074 [TBL] [Abstract][Full Text] [Related]
2. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. Su YH; McGrath SP; Zhu YG; Zhao FJ New Phytol; 2008; 180(2):434-441. PubMed ID: 18662326 [TBL] [Abstract][Full Text] [Related]
3. Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus. Logoteta B; Xu XY; Macnair MR; McGrath SP; Zhao FJ New Phytol; 2009; 183(2):340-348. PubMed ID: 19402874 [TBL] [Abstract][Full Text] [Related]
4. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)? Zhang M; Zhao Q; Xue P; Zhang S; Li B; Liu W Environ Pollut; 2017 Oct; 229():647-654. PubMed ID: 28689153 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. Chen Z; Zhu YG; Liu WJ; Meharg AA New Phytol; 2005 Jan; 165(1):91-7. PubMed ID: 15720624 [TBL] [Abstract][Full Text] [Related]
6. Characterization of As efflux from the roots of As hyperaccumulator Pteris vittata L. Huang Y; Hatayama M; Inoue C Planta; 2011 Dec; 234(6):1275-84. PubMed ID: 21789508 [TBL] [Abstract][Full Text] [Related]
7. The role of the rice aquaporin Lsi1 in arsenite efflux from roots. Zhao FJ; Ago Y; Mitani N; Li RY; Su YH; Yamaji N; McGrath SP; Ma JF New Phytol; 2010 Apr; 186(2):392-9. PubMed ID: 20163552 [TBL] [Abstract][Full Text] [Related]
8. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. Hatayama M; Sato T; Shinoda K; Inoue C J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228 [TBL] [Abstract][Full Text] [Related]
9. Uptake kinetics of arsenic species in rice plants. Abedin MJ; Feldmann J; Meharg AA Plant Physiol; 2002 Mar; 128(3):1120-8. PubMed ID: 11891266 [TBL] [Abstract][Full Text] [Related]
10. Arsenic species: effects on and accumulation by tomato plants. Burló F; Guijarro I; Carbonell-Barrachina AA; Valero D; Martínez-Sánchez F J Agric Food Chem; 1999 Mar; 47(3):1247-53. PubMed ID: 10552445 [TBL] [Abstract][Full Text] [Related]
11. The combined impacts of selenium and phosphorus on the fate of arsenic in rice seedlings (Oryza sativa L.). Wang Y; Kong L; Wang K; Tao Y; Qi H; Wan Y; Wang Q; Li H Chemosphere; 2022 Dec; 308(Pt 3):136590. PubMed ID: 36167200 [TBL] [Abstract][Full Text] [Related]
12. Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana: implications for as detoxification and accumulation in plants. Liu W; Schat H; Bliek M; Chen Y; McGrath SP; George G; Salt DE; Zhao FJ PLoS One; 2012; 7(8):e42408. PubMed ID: 22879969 [TBL] [Abstract][Full Text] [Related]
13. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Quaghebeur M; Rengel Z Plant Physiol; 2003 Jul; 132(3):1600-9. PubMed ID: 12857839 [TBL] [Abstract][Full Text] [Related]
14. OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation. Shi S; Wang T; Chen Z; Tang Z; Wu Z; Salt DE; Chao DY; Zhao FJ Plant Physiol; 2016 Nov; 172(3):1708-1719. PubMed ID: 27702843 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of arsenite and arsenate on rice (Oryza sativa) plants differing in glutathione S-transferase gene expression. Pandey A; Wu LB; Murugaiyan V; Schaaf G; Ali J; Frei M Environ Sci Pollut Res Int; 2023 Aug; 30(40):92268-92281. PubMed ID: 37486470 [TBL] [Abstract][Full Text] [Related]
16. Arsenic uptake and speciation and the effects of phosphate nutrition in hydroponically grown kikuyu grass (Pennisetum clandestinum Hochst). Panuccio MR; Logoteta B; Beone GM; Cagnin M; Cacco G Environ Sci Pollut Res Int; 2011 Aug; 19(7):3046-53. PubMed ID: 22367495 [TBL] [Abstract][Full Text] [Related]
17. Arsenic uptake and metabolism in plants. Zhao FJ; Ma JF; Meharg AA; McGrath SP New Phytol; 2009 Mar; 181(4):777-794. PubMed ID: 19207683 [TBL] [Abstract][Full Text] [Related]
18. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. Zhang X; Zhao FJ; Huang Q; Williams PN; Sun GX; Zhu YG New Phytol; 2009; 182(2):421-428. PubMed ID: 19210724 [TBL] [Abstract][Full Text] [Related]
19. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions. Park JH; Han YS; Seong HJ; Ahn JS; Nam IH Chemosphere; 2016 Jul; 154():283-288. PubMed ID: 27058920 [TBL] [Abstract][Full Text] [Related]
20. Selenite and selenate showed contrasting impacts on the fate of arsenic in rice (Oryza sativa L.) regardless of the formation of iron plaque. Wang K; Wang Y; Zhang C; Zhao L; Kong L; Wang Q; Li H; Wan Y Environ Pollut; 2022 Nov; 312():120039. PubMed ID: 36041566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]