BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 17692325)

  • 41. Monte Carlo simulation on symmetric ABA/AB copolymer blends in confined thin films.
    Song J; Li Y; Huang Q; Shi T; An L
    J Chem Phys; 2007 Sep; 127(9):094903. PubMed ID: 17824761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In situ fabrication of self-transformable and hydrophilic poly(ethylene glycol) derivative-modified polysulfone membranes.
    Kim YW; Shick Ahn W; Kim JJ; Ha Kim Y
    Biomaterials; 2005 Jun; 26(16):2867-75. PubMed ID: 15603782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.
    Zou S; Hong R; Emrick T; Walker GC
    Langmuir; 2007 Feb; 23(4):1612-4. PubMed ID: 17243744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of the transition between lamellar and gyroid phases formed by a diblock copolymer in aqueous solution.
    Hamley IW; Castelletto V; Mykhaylyk OO; Yang Z; May RP; Lyakhova KS; Sevink GJ; Zvelindovsky AV
    Langmuir; 2004 Dec; 20(25):10785-90. PubMed ID: 15568825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. pH-responsive nanoaggregation of diblock phosphorylcholine copolymers.
    Mu QS; Zhao XB; Lu JR; Armes SP; Lewis AL; Thomas RK
    J Phys Chem B; 2008 Aug; 112(32):9652-9. PubMed ID: 18637682
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ordered nanostructures self-assembled from block copolymer tethered nanoparticles.
    Zhu X; Wang L; Lin J; Zhang L
    ACS Nano; 2010 Sep; 4(9):4979-88. PubMed ID: 20722410
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer simulations of block copolymer tethered nanoparticle self-assembly.
    Chan ER; Ho LC; Glotzer SC
    J Chem Phys; 2006 Aug; 125(6):64905. PubMed ID: 16942310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diblock polyampholytes grafted onto spherical particles: Monte Carlo simulation and lattice mean-field theory.
    Akinchina A; Shusharina NP; Linse P
    Langmuir; 2004 Nov; 20(23):10351-60. PubMed ID: 15518535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers.
    Azzam T; Bronstein L; Eisenberg A
    Langmuir; 2008 Jun; 24(13):6521-9. PubMed ID: 18484759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulation of interaction forces between nanoparticles in the presence of Lennard-Jones polymers: freely adsorbing homopolymer modifiers.
    Marla KT; Meredith JC
    Langmuir; 2005 Jan; 21(1):487-97. PubMed ID: 15620343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular thermodynamic modeling of the morphology transitions in a solution of a diblock copolymer containing a weak polyelectrolyte chain.
    Victorov AI; Plotnikov NV; Hong PD
    J Phys Chem B; 2010 Jul; 114(27):8846-60. PubMed ID: 20560607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of adsorbate-surface interaction energy on adsorption and recognition of diblock copolymers on patterned surfaces.
    Sumithra K
    J Chem Phys; 2009 May; 130(19):194903. PubMed ID: 19466862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and characterization of magnetic nanoparticle/block copolymer composites.
    Lo CT; Chao CJ
    Langmuir; 2009 Nov; 25(22):12865-9. PubMed ID: 19831377
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of primary amine-based block copolymer vesicles by direct dissolution in water and subsequent stabilization by sol-gel chemistry.
    Du J; Armes SP
    Langmuir; 2008 Dec; 24(23):13710-6. PubMed ID: 18954148
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chiral nanopatterned surfaces as versatile enantiospecific adsorbents: a Monte Carlo model.
    Szabelski P
    J Chem Phys; 2008 May; 128(18):184702. PubMed ID: 18532831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intraglobular structures in multiblock copolymer chains from a Monte Carlo simulation.
    Lewandowski K; Banaszak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011806. PubMed ID: 21867204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption and pinning of multiblock copolymers on chemically heterogeneous patterned surfaces.
    Sumithra K; Brandau M; Straube E
    J Chem Phys; 2009 Jun; 130(23):234901. PubMed ID: 19548750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The structure of nanochannels formed by block copolymer solutions confined in nanotubes.
    Chen H; Ruckenstein E
    J Chem Phys; 2009 Sep; 131(11):114904. PubMed ID: 19778146
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Designing pattern-recognition surfaces for selective adsorption of copolymer sequences using lattice monte carlo simulation.
    Jayaraman A; Hall CK; Genzer J
    Phys Rev Lett; 2005 Feb; 94(7):078103. PubMed ID: 15783859
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach.
    Gauthier MG; Slater GW
    J Chem Phys; 2008 Feb; 128(6):065103. PubMed ID: 18282074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.