BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17692583)

  • 1. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation.
    Niemelä T; Niiranen H; Kellomäki M
    Acta Biomater; 2008 Jan; 4(1):156-64. PubMed ID: 17692583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity.
    Niemelä T; Niiranen H; Kellomäki M; Törmälä P
    Acta Biomater; 2005 Mar; 1(2):235-42. PubMed ID: 16701800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo behavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites.
    Niiranen H; Pyhältö T; Rokkanen P; Kellomäki M; Törmälä P
    J Biomed Mater Res A; 2004 Jun; 69(4):699-708. PubMed ID: 15162412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.
    Misra SK; Mohn D; Brunner TJ; Stark WJ; Philip SE; Roy I; Salih V; Knowles JC; Boccaccini AR
    Biomaterials; 2008 Apr; 29(12):1750-61. PubMed ID: 18255139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-reinforced bioactive and bioabsorbable hybrid composites.
    Huttunen M; Törmälä P; Godinho P; Kellomäki M
    Biomed Mater; 2008 Sep; 3(3):034106. PubMed ID: 18689925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.
    Chouzouri G; Xanthos M
    Acta Biomater; 2007 Sep; 3(5):745-56. PubMed ID: 17392042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites.
    Ji L; Wang W; Jin D; Zhou S; Song X
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():1-9. PubMed ID: 25491953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation properties and ion release characteristics of Resilon and phosphate glass/polycaprolactone composites.
    Borbely P; Gulabivala K; Knowles JC
    Int Endod J; 2008 Dec; 41(12):1093-100. PubMed ID: 19133099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass.
    Li H; Du R; Chang J
    J Biomater Appl; 2005 Oct; 20(2):137-55. PubMed ID: 16183674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.
    Chen M; Parsons AJ; Felfel RM; Rudd CD; Irvine DJ; Ahmed I
    J Mech Behav Biomed Mater; 2016 Jun; 59():78-89. PubMed ID: 26748261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Premature degradation of poly(alpha-hydroxyesters) during thermal processing of Bioglass-containing composites.
    Blaker JJ; Bismarck A; Boccaccini AR; Young AM; Nazhat SN
    Acta Biomater; 2010 Mar; 6(3):756-62. PubMed ID: 19683603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.
    Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly(epsilon-caprolactone-co-DL-lactide) and bioactive glass (S53P4).
    Jaakkola T; Rich J; Tirri T; Närhi T; Jokinen M; Seppälä J; Yli-Urpo A
    Biomaterials; 2004 Feb; 25(4):575-81. PubMed ID: 14607495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of poly(epsilon-caprolactone-co-DL-lactide)/ bioactive glass composites.
    Rich J; Jaakkola T; Tirri T; Närhi T; Yli-Urpo A; Seppälä J
    Biomaterials; 2002 May; 23(10):2143-50. PubMed ID: 11962655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a bioactive glass fiber reinforced starch-polycaprolactone composite.
    Jukola H; Nikkola L; Gomes ME; Chiellini F; Tukiainen M; Kellomäki M; Chiellini E; Reis RL; Ashammakhi N
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):197-203. PubMed ID: 18386831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bioactive glass-reinforced HAP-polymer composites.
    Greish YE; Brown PW
    J Biomed Mater Res; 2000 Dec; 52(4):687-94. PubMed ID: 11033551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of long-term in vitro testing on the properties of bioactive glass-polysulfone composites.
    Oréfice R; West J; Latorre G; Hench L; Brennan A
    Biomacromolecules; 2010 Mar; 11(3):657-65. PubMed ID: 20108891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.