These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 17693070)
21. [Expression of carbonic anhydrase II in human testes and spermatozoa and its clinical significance]. Zhao C; Zhou ZM; Sha JH; Pan SY Zhonghua Nan Ke Xue; 2010 Oct; 16(10):911-4. PubMed ID: 21243755 [TBL] [Abstract][Full Text] [Related]
22. Fatty acid and sterol composition of frozen and freeze-dried New Zealand Green Lipped Mussel (Perna canaliculus) from three sites in New Zealand. Murphy KJ; Mann NJ; Sinclair AJ Asia Pac J Clin Nutr; 2003; 12(1):50-60. PubMed ID: 12737011 [TBL] [Abstract][Full Text] [Related]
23. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients. Panner Selvam MK; Agarwal A; Pushparaj PN Andrology; 2019 Jul; 7(4):454-462. PubMed ID: 30924599 [TBL] [Abstract][Full Text] [Related]
24. Quality and lipid composition of spermatozoa in rabbits fed DHA and vitamin E rich diets. Gliozzi TM; Zaniboni L; Maldjian A; Luzi F; Maertens L; Cerolini S Theriogenology; 2009 Apr; 71(6):910-9. PubMed ID: 19121864 [TBL] [Abstract][Full Text] [Related]
25. White blood cells cause oxidative damage to the fatty acid composition of phospholipids of human spermatozoa. Zalata AA; Christophe AB; Depuydt CE; Schoonjans F; Comhaire FH Int J Androl; 1998 Jun; 21(3):154-62. PubMed ID: 9669199 [TBL] [Abstract][Full Text] [Related]
26. Quantitative assessment of transition proteins 1, 2 spermatid-specific linker histone H1-like protein transcripts in spermatozoa from normozoospermic and asthenozoospermic men. Jedrzejczak P; Kempisty B; Bryja A; Mostowska M; Depa-Martynow M; Pawelczyk L; Jagodzinski PP Arch Androl; 2007; 53(4):199-205. PubMed ID: 17852044 [TBL] [Abstract][Full Text] [Related]
27. Capacitation-associated protein tyrosine phosphorylation and membrane fluidity changes are impaired in the spermatozoa of asthenozoospermic patients. Buffone MG; Calamera JC; Verstraeten SV; Doncel GF Reproduction; 2005 Jun; 129(6):697-705. PubMed ID: 15923385 [TBL] [Abstract][Full Text] [Related]
28. Functional expression of ropporin in human testis and ejaculated spermatozoa. Chen J; Wang Y; Wei B; Lai Y; Yan Q; Gui Y; Cai Z J Androl; 2011; 32(1):26-32. PubMed ID: 20705794 [TBL] [Abstract][Full Text] [Related]
29. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Zhao C; Huo R; Wang FQ; Lin M; Zhou ZM; Sha JH Fertil Steril; 2007 Feb; 87(2):436-8. PubMed ID: 17074334 [TBL] [Abstract][Full Text] [Related]
30. Lipid composition in human breast milk from Granada (Spain): changes during lactation. Sala-Vila A; Castellote AI; Rodriguez-Palmero M; Campoy C; López-Sabater MC Nutrition; 2005 Apr; 21(4):467-73. PubMed ID: 15811767 [TBL] [Abstract][Full Text] [Related]
31. Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Martin RE; Elliott MH; Brush RS; Anderson RE Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1147-54. PubMed ID: 15790872 [TBL] [Abstract][Full Text] [Related]
32. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia. Liu SW; Li Y; Zou LL; Guan YT; Peng S; Zheng LX; Deng SM; Zhu LY; Wang LW; Chen LX Asian J Androl; 2017; 19(4):418-424. PubMed ID: 27270342 [TBL] [Abstract][Full Text] [Related]
33. Effects of in utero and in vitro incubation on the lipid-bound fatty acids and sterols of porcine spermatozoa. Evans RW; Weaver DE; Clegg ED Gamete Res; 1987 Oct; 18(2):153-62. PubMed ID: 3507367 [TBL] [Abstract][Full Text] [Related]
34. Metabonomic analysis of fatty acids in seminal plasma between healthy and asthenozoospermic men based on gas chromatography mass spectrometry. Tang B; Shang X; Qi H; Li J; Ma B; An G; Zhang Q Andrologia; 2017 Nov; 49(9):. PubMed ID: 28124472 [TBL] [Abstract][Full Text] [Related]
35. Low expression of glycoprotein subunit 130 in ejaculated spermatozoa from asthenozoospermic men. Cai ZM; Gui YT; Guo X; Yu J; Guo LD; Zhang LB; Wang H; Yu J J Androl; 2006; 27(5):645-52. PubMed ID: 16728717 [TBL] [Abstract][Full Text] [Related]
36. [Expression of TEKT4 protein decreases in the ejaculated spermatozoa of idiopathic asthenozoospermic men]. Wu WB; Li YS; Ji XF; Wang QX; Gao XM; Yang XF; Pan ZH; Feng XX Zhonghua Nan Ke Xue; 2012 Jun; 18(6):514-7. PubMed ID: 22774605 [TBL] [Abstract][Full Text] [Related]
37. Identification of proteomic differences in asthenozoospermic sperm samples. Martínez-Heredia J; de Mateo S; Vidal-Taboada JM; Ballescà JL; Oliva R Hum Reprod; 2008 Apr; 23(4):783-91. PubMed ID: 18281682 [TBL] [Abstract][Full Text] [Related]
38. Altered Molecular Pathways in the Proteome of Cryopreserved Sperm in Testicular Cancer Patients before Treatment. Panner Selvam MK; Agarwal A; Pushparaj PN Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30764484 [TBL] [Abstract][Full Text] [Related]
39. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Alvarez JG; Storey BT Mol Reprod Dev; 1995 Nov; 42(3):334-46. PubMed ID: 8579848 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the NOX5 protein expression and oxidative stress in sperm from asthenozoospermic men compared to normozoospermic men. Vatannejad A; Tavilani H; Sadeghi MR; Karimi M; Lakpour N; Amanpour S; Shabani Nashtaei M; Doosti M J Endocrinol Invest; 2019 Oct; 42(10):1181-1189. PubMed ID: 30963466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]