These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 17693487)
1. Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. Irwin D; Helm K; Campbell N; Imamura M; Fagan K; Harral J; Carr M; Young KA; Klemm D; Gebb S; Dempsey EC; West J; Majka S Am J Physiol Lung Cell Mol Physiol; 2007 Oct; 293(4):L941-51. PubMed ID: 17693487 [TBL] [Abstract][Full Text] [Related]
2. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Balasubramaniam V; Mervis CF; Maxey AM; Markham NE; Abman SH Am J Physiol Lung Cell Mol Physiol; 2007 May; 292(5):L1073-84. PubMed ID: 17209139 [TBL] [Abstract][Full Text] [Related]
3. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. Gong J; Feng Z; Peterson AL; Carr JF; Vang A; Braza J; Choudhary G; Dennery PA; Yao H J Pathol; 2020 Dec; 252(4):411-422. PubMed ID: 32815166 [TBL] [Abstract][Full Text] [Related]
4. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function. Cox AM; Gao Y; Perl AT; Tepper RS; Ahlfeld SK Pediatr Pulmonol; 2017 May; 52(5):616-624. PubMed ID: 28186703 [TBL] [Abstract][Full Text] [Related]
5. Altered small airways in aged mice following neonatal exposure to hyperoxic gas. O'Reilly M; Harding R; Sozo F Neonatology; 2014; 105(1):39-45. PubMed ID: 24281398 [TBL] [Abstract][Full Text] [Related]
6. Transgenic overexpression of granulocyte macrophage-colony stimulating factor in the lung prevents hyperoxic lung injury. Paine R; Wilcoxen SE; Morris SB; Sartori C; Baleeiro CE; Matthay MA; Christensen PJ Am J Pathol; 2003 Dec; 163(6):2397-406. PubMed ID: 14633611 [TBL] [Abstract][Full Text] [Related]
7. Apoptosis in neonatal murine lung exposed to hyperoxia. McGrath-Morrow SA; Stahl J Am J Respir Cell Mol Biol; 2001 Aug; 25(2):150-5. PubMed ID: 11509323 [TBL] [Abstract][Full Text] [Related]
8. Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable. Cantu A; Cantu Gutierrez M; Zhang Y; Dong X; Lingappan K Physiol Genomics; 2023 Aug; 55(8):345-354. PubMed ID: 37395632 [TBL] [Abstract][Full Text] [Related]
9. [Apoptosis in neonatal rat lung exposed to hyperoxia]. Li YX; Luo XP; Liao LJ; Liu WJ; Ning Q Zhonghua Er Ke Za Zhi; 2005 Aug; 43(8):585-90. PubMed ID: 16191268 [TBL] [Abstract][Full Text] [Related]
10. The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. Gong J; Feng Z; Peterson AL; Carr JF; Lu X; Zhao H; Ji X; Zhao YY; De Paepe ME; Dennery PA; Yao H JCI Insight; 2021 Mar; 6(5):. PubMed ID: 33497360 [TBL] [Abstract][Full Text] [Related]
11. THE ROLE OF MITOCHONDRIAL FATTY ACID USE IN NEONATAL LUNG INJURY AND REPAIR. Dennery PA; Carr J; Peterson A; Yao H Trans Am Clin Climatol Assoc; 2018; 129():195-201. PubMed ID: 30166714 [TBL] [Abstract][Full Text] [Related]
13. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. Velten M; Heyob KM; Rogers LK; Welty SE J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995 [TBL] [Abstract][Full Text] [Related]
14. The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Al-Rubaie A; Wise AF; Sozo F; De Matteo R; Samuel CS; Harding R; Ricardo SD Respir Res; 2018 Jun; 19(1):114. PubMed ID: 29884181 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle Delivery of Proangiogenic Transcription Factors into the Neonatal Circulation Inhibits Alveolar Simplification Caused by Hyperoxia. Bolte C; Ustiyan V; Ren X; Dunn AW; Pradhan A; Wang G; Kolesnichenko OA; Deng Z; Zhang Y; Shi D; Greenberg JM; Jobe AH; Kalin TV; Kalinichenko VV Am J Respir Crit Care Med; 2020 Jul; 202(1):100-111. PubMed ID: 32240596 [No Abstract] [Full Text] [Related]
16. Mesenchymal stem cells protect against neonatal rat hyperoxic lung injury. Zhang H; Fang J; Wu Y; Mai Y; Lai W; Su H Expert Opin Biol Ther; 2013 Jun; 13(6):817-29. PubMed ID: 23534609 [TBL] [Abstract][Full Text] [Related]
17. Exposure to cyclic oxygen sufficient for development of oxygen-induced retinopathy does not induce bronchopulmonary dysplasia in rats. Klebe S; Wijngaarden Pv; Melville T; Lipsett J; Smet HD; Coster D; Williams KA Exp Lung Res; 2010 Apr; 36(3):175-82. PubMed ID: 20334604 [TBL] [Abstract][Full Text] [Related]
18. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Kunig AM; Balasubramaniam V; Markham NE; Morgan D; Montgomery G; Grover TR; Abman SH Am J Physiol Lung Cell Mol Physiol; 2005 Oct; 289(4):L529-35. PubMed ID: 15908474 [TBL] [Abstract][Full Text] [Related]
19. Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice. McKenna S; Michaelis KA; Agboke F; Liu T; Han K; Yang G; Dennery PA; Wright CJ Am J Physiol Lung Cell Mol Physiol; 2014 Jun; 306(12):L1078-89. PubMed ID: 24748603 [TBL] [Abstract][Full Text] [Related]
20. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells. Zhang S; Patel A; Moorthy B; Shivanna B Biochem Biophys Res Commun; 2015 Sep; 464(4):1048-1053. PubMed ID: 26196743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]