BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 17693491)

  • 1. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
    Vogl C; Grill S; Schilling O; Stülke J; Mack M; Stolz J
    J Bacteriol; 2007 Oct; 189(20):7367-75. PubMed ID: 17693491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum.
    Takemoto N; Tanaka Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bacillus subtilis ypaA gene regulation mechanism involves FMN-binding sensor RNA].
    Sklyarova SA; Mironov AS
    Genetika; 2014 Mar; 50(3):364-8. PubMed ID: 25438558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Synechococcus sp. strain PCC 7002 for the photoautotrophic production of light-sensitive riboflavin (vitamin B2).
    Kachel B; Mack M
    Metab Eng; 2020 Nov; 62():275-286. PubMed ID: 32992032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of roseoflavin-overproducing microorganisms.
    Mora-Lugo R; Stegmüller J; Mack M
    Microb Cell Fact; 2019 Aug; 18(1):146. PubMed ID: 31451111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
    Ott E; Stolz J; Lehmann M; Mack M
    RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.
    Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D
    J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains.
    Hemberger S; Pedrolli DB; Stolz J; Vogl C; Lehmann M; Mack M
    BMC Biotechnol; 2011 Dec; 11():119. PubMed ID: 22136195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A second riboflavin import system is present in flavinogenic Streptomyces davaonensis and supports roseoflavin biosynthesis.
    Schneider C; Mack M
    Mol Microbiol; 2021 Aug; 116(2):470-482. PubMed ID: 33829573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and binding of riboflavin by Bacillus subtilis.
    Cecchini G; Perl M; Lipsick J; Singer TP; Kearney EB
    J Biol Chem; 1979 Aug; 254(15):7295-301. PubMed ID: 110806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum.
    Takemoto N; Tanaka Y; Inui M
    Nucleic Acids Res; 2015 Jan; 43(1):520-9. PubMed ID: 25477389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin binding to the high affinity riboflavin transporter RibU.
    Duurkens RH; Tol MB; Geertsma ER; Permentier HP; Slotboom DJ
    J Biol Chem; 2007 Apr; 282(14):10380-6. PubMed ID: 17289680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum.
    Wang Z; Chen T; Ma X; Shen Z; Zhao X
    Bioresour Technol; 2011 Feb; 102(4):3934-40. PubMed ID: 21194928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Riboflavin Transporter in Bdellovibrio exovorous JSS.
    Rodionova IA; Heidari Tajabadi F; Zhang Z; Rodionov DA; Saier MH
    J Mol Microbiol Biotechnol; 2019; 29(1-6):27-34. PubMed ID: 31509826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes.
    Matern A; Pedrolli D; Großhennig S; Johansson J; Mack M
    J Bacteriol; 2016 Dec; 198(23):3233-3243. PubMed ID: 27672192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study of the phenotypic occurrence of ura gene inactivation in Bacillus subtilis].
    Kreneva RA; Gel'fand MS; Mironov AA; Iomantas IuA; Kozlov IuI; Mironov AS; Perumov DA
    Genetika; 2000 Aug; 36(8):1166-8. PubMed ID: 11033791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate is excreted across the cytoplasmic membrane through the NCgl1221 channel of Corynebacterium glutamicum by passive diffusion.
    Hashimoto K; Murata J; Konishi T; Yabe I; Nakamatsu T; Kawasaki H
    Biosci Biotechnol Biochem; 2012; 76(7):1422-4. PubMed ID: 22785475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis.
    Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.