These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17693559)

  • 21. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions.
    Liu T; Chen D; Li X; Li F
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30844067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment.
    Laufer K; Niemeyer A; Nikeleit V; Halama M; Byrne JM; Kappler A
    FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28431154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Investigation of the anaerobic metabolism of Rhodobacter capsulatus with a flux model].
    Golomysova AN; Ivanov PS
    Biofizika; 2011; 56(1):85-98. PubMed ID: 21442889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1.
    Jiao Y; Kappler A; Croal LR; Newman DK
    Appl Environ Microbiol; 2005 Aug; 71(8):4487-96. PubMed ID: 16085840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Pino C; Olmo-Mira F; Cabello P; Martínez-Luque M; Castillo F; Roldán MD; Moreno-Vivián C
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):127-9. PubMed ID: 16417500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of bacteriochlorophyll biosynthesis in the purple phototrophic bacteria Rhodospirillumrubrum and Rhodobacter capsulatus grown in the presence of a toxic concentration of selenite.
    Kessi J; Hörtensteiner S
    BMC Microbiol; 2018 Jul; 18(1):81. PubMed ID: 30064359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments.
    Kopf SH; Henny C; Newman DK
    Environ Sci Technol; 2013 Mar; 47(6):2602-11. PubMed ID: 23402562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into Carbon Metabolism Provided by Fluorescence
    Tominski C; Lösekann-Behrens T; Ruecker A; Hagemann N; Kleindienst S; Mueller CW; Höschen C; Kögel-Knabner I; Kappler A; Behrens S
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.
    Park S; Kim DH; Lee JH; Hur HG
    FEMS Microbiol Ecol; 2014 Oct; 90(1):68-77. PubMed ID: 24965827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
    Haas NW; Jain A; Hying Z; Arif SJ; Niehaus TD; Gralnick JA; Fixen KR
    Appl Environ Microbiol; 2022 Aug; 88(15):e0097422. PubMed ID: 35862670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation.
    Cheng K; Li H; Yuan X; Yin Y; Chen D; Wang Y; Li X; Chen G; Li F; Peng C; Wu Y; Liu T
    Geobiology; 2022 Nov; 20(6):810-822. PubMed ID: 35829697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain.
    Heising S; Schink B
    Microbiology (Reading); 1998 Aug; 144 ( Pt 8)():2263-2269. PubMed ID: 9720049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial lithotrophic oxidation of structural Fe(II) in biotite.
    Shelobolina E; Xu H; Konishi H; Kukkadapu R; Wu T; Blöthe M; Roden E
    Appl Environ Microbiol; 2012 Aug; 78(16):5746-52. PubMed ID: 22685132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.
    Laufer K; Røy H; Jørgensen BB; Kappler A
    Appl Environ Microbiol; 2016 Oct; 82(20):6120-6131. PubMed ID: 27496777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does a low-pH microenvironment around phototrophic Fe(II) -oxidizing bacteria prevent cell encrustation by Fe(III) minerals?
    Hegler F; Schmidt C; Schwarz H; Kappler A
    FEMS Microbiol Ecol; 2010 Dec; 74(3):592-600. PubMed ID: 20950343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum.
    Lack JG; Chaudhuri SK; Chakraborty R; Achenbach LA; Coates JD
    Microb Ecol; 2002 May; 43(4):424-31. PubMed ID: 11953812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species.
    Chakraborty A; Picardal F
    World J Microbiol Biotechnol; 2013 Apr; 29(4):617-23. PubMed ID: 23184578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions.
    Ellington MJK; Richardson DJ; Ferguson SJ
    Microbiology (Reading); 2003 Apr; 149(Pt 4):941-948. PubMed ID: 12686636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.
    Tominski C; Heyer H; Lösekann-Behrens T; Behrens S; Kappler A
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus.
    Tichi MA; Meijer WG; Tabita FR
    J Bacteriol; 2001 Dec; 183(24):7285-94. PubMed ID: 11717288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.