BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 17693703)

  • 21. RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum.
    Blombach B; Cramer A; Eikmanns BJ; Schreiner M
    J Mol Microbiol Biotechnol; 2009; 16(3-4):236-9. PubMed ID: 17890844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.
    Blombach B; Buchholz J; Busche T; Kalinowski J; Takors R
    J Biotechnol; 2013 Dec; 168(4):331-40. PubMed ID: 24140290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
    Uhde A; Youn JW; Maeda T; Clermont L; Matano C; Krämer R; Wendisch VF; Seibold GM; Marin K
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1679-87. PubMed ID: 22854894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum.
    Engels V; Georgi T; Wendisch VF
    FEMS Microbiol Lett; 2008 Dec; 289(1):80-9. PubMed ID: 19054097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.
    Sasaki M; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cre-lox66/lox71-based elimination of phosphotransacetylase or acetaldehyde dehydrogenase shifted carbon flux in acetogen rendering selective overproduction of ethanol or acetate.
    Berzin V; Kiriukhin M; Tyurin M
    Appl Biochem Biotechnol; 2012 Nov; 168(6):1384-93. PubMed ID: 22941272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032.
    Cha PH; Park SY; Moon MW; Subhadra B; Oh TK; Kim E; Kim JF; Lee JK
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1061-8. PubMed ID: 19568747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Corynebacterium glutamicum for glycolate production.
    Zahoor A; Otten A; Wendisch VF
    J Biotechnol; 2014 Dec; 192 Pt B():366-75. PubMed ID: 24486442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase.
    Brockmann-Gretza O; Kalinowski J
    BMC Genomics; 2006 Sep; 7():230. PubMed ID: 16961923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase.
    Lessmeier L; Hoefener M; Wendisch VF
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2651-2662. PubMed ID: 24065717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol physiology in the warehouse-staining fungus, Baudoinia compniacensis.
    Ewaze JO; Summerbell RC; Scott JA
    Mycol Res; 2008 Nov; 112(Pt 11):1373-80. PubMed ID: 18951774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives.
    Yamamoto S; Sakai M; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 May; 90(3):1051-61. PubMed ID: 21327408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH.
    Lüdke A; Krämer R; Burkovski A; Schluesener D; Poetsch A
    BMC Microbiol; 2007 Jan; 7():6. PubMed ID: 17254330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum.
    Auchter M; Laslo T; Fleischer C; Schiller L; Arndt A; Gaigalat L; Kalinowski J; Eikmanns BJ
    J Biotechnol; 2011 Mar; 152(3):77-86. PubMed ID: 21320555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme.
    Reinscheid DJ; Eikmanns BJ; Sahm H
    J Bacteriol; 1994 Jun; 176(12):3474-83. PubMed ID: 8206824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the gene expression profile of Acetobacter aceti during growth on ethanol.
    Sakurai K; Arai H; Ishii M; Igarashi Y
    J Biosci Bioeng; 2012 Mar; 113(3):343-8. PubMed ID: 22153844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.