These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17693707)

  • 1. The energy spilling reactions of bacteria and other organisms.
    Russell JB
    J Mol Microbiol Biotechnol; 2007; 13(1-3):1-11. PubMed ID: 17693707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance.
    Cook GM; Russell JB
    Appl Environ Microbiol; 1994 Jun; 60(6):1942-8. PubMed ID: 8031089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of bacterial growth: balance of anabolic and catabolic reactions.
    Russell JB; Cook GM
    Microbiol Rev; 1995 Mar; 59(1):48-62. PubMed ID: 7708012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling) in Streptococcus bovis JB1.
    Bond DR; Russell JB
    Appl Environ Microbiol; 1998 Mar; 64(3):976-81. PubMed ID: 9501437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Role for Fructose 1,6-Diphosphate in the ATPase-Mediated Energy-Spilling Reaction of Streptococcus bovis.
    Bond DR; Russell JB
    Appl Environ Microbiol; 1996 Jun; 62(6):2095-9. PubMed ID: 16535338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1996 Jul; 79(7):1237-43. PubMed ID: 8872717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies that ruminal bacteria use to handle excess carbohydrate.
    Russell JB
    J Anim Sci; 1998 Jul; 76(7):1955-63. PubMed ID: 9690652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis.
    Russell JB; Strobel HJ
    Arch Microbiol; 1990; 153(4):378-83. PubMed ID: 2140038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.
    Teixeira CRV; Lana RP; Tao J; Hackmann TJ
    FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 28486619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximizing efficiency of rumen microbial protein production.
    Hackmann TJ; Firkins JL
    Front Microbiol; 2015; 6():465. PubMed ID: 26029197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the responses of mixed rumen microbes to excess carbohydrate.
    Hackmann TJ; Diese LE; Firkins JL
    Appl Environ Microbiol; 2013 Jun; 79(12):3786-95. PubMed ID: 23584777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion.
    Bond DR; Russell JB
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():687-694. PubMed ID: 10746772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of soluble microbial product formation in substrate-sufficient batch culture of activated sludge.
    Liu Y; Rols JL
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):605-8. PubMed ID: 12172633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
    Dauner M; Storni T; Sauer U
    J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A re-assessment of bacterial growth efficiency: the heat production and membrane potential of Streptococcus bovis in batch and continuous culture.
    Russell JB
    Arch Microbiol; 1991; 155(6):559-65. PubMed ID: 1953297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glutamine cyclotransferase reaction of Streptococcus bovis: a novel mechanism of deriving energy from non-oxidative and non-reductive deamination.
    Cook GM; Russell JB
    FEMS Microbiol Lett; 1993 Aug; 111(2-3):263-8. PubMed ID: 8405935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens.
    Haddix PL; Jones S; Patel P; Burnham S; Knights K; Powell JN; LaForm A
    J Bacteriol; 2008 Nov; 190(22):7453-63. PubMed ID: 18805986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1976 Nov; 110(23):305-11. PubMed ID: 1015953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active transport of Ca2+ in bacteria: bioenergetics and function.
    Devés R; Brodie AF
    Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.