BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 17694441)

  • 1. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment.
    Nalayanda DD; Puleo CM; Fulton WB; Wang TH; Abdullah F
    Exp Lung Res; 2007 Aug; 33(6):321-35. PubMed ID: 17694441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels.
    Nalayanda DD; Wang Q; Fulton WB; Wang TH; Abdullah F
    J Pediatr Surg; 2010 Jan; 45(1):45-51. PubMed ID: 20105578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion dependent cell behavior in microenvironments.
    Yu H; Meyvantsson I; Shkel IA; Beebe DJ
    Lab Chip; 2005 Oct; 5(10):1089-95. PubMed ID: 16175265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of osteoblastic cells in a microfluidic environment.
    Leclerc E; David B; Griscom L; Lepioufle B; Fujii T; Layrolle P; Legallaisa C
    Biomaterials; 2006 Feb; 27(4):586-95. PubMed ID: 16026825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic alignment of collagen fibers for in vitro cell culture.
    Lee P; Lin R; Moon J; Lee LP
    Biomed Microdevices; 2006 Mar; 8(1):35-41. PubMed ID: 16491329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel multishear microdevice for studying cell mechanics.
    Chau L; Doran M; Cooper-White J
    Lab Chip; 2009 Jul; 9(13):1897-902. PubMed ID: 19532965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards microfabricated biohybrid artificial lung modules for chronic respiratory support.
    Burgess KA; Hu HH; Wagner WR; Federspiel WJ
    Biomed Microdevices; 2009 Feb; 11(1):117-27. PubMed ID: 18696229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic arrays for logarithmically perfused embryonic stem cell culture.
    Kim L; Vahey MD; Lee HY; Voldman J
    Lab Chip; 2006 Mar; 6(3):394-406. PubMed ID: 16511623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research.
    Minuth WW; Strehl R
    Biomed Mater; 2007 Jun; 2(2):R1-R11. PubMed ID: 18458434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a renal microchip for in vitro distal tubule models.
    Baudoin R; Griscom L; Monge M; Legallais C; Leclerc E
    Biotechnol Prog; 2007; 23(5):1245-53. PubMed ID: 17725364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin based microfluidic devices for cell culture.
    Paguirigan A; Beebe DJ
    Lab Chip; 2006 Mar; 6(3):407-13. PubMed ID: 16511624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating polyurethane culture substrates into poly(dimethylsiloxane) microdevices.
    Moraes C; Kagoma YK; Beca BM; Tonelli-Zasarsky RL; Sun Y; Simmons CA
    Biomaterials; 2009 Oct; 30(28):5241-50. PubMed ID: 19545891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.