These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17694542)

  • 1. Calorimetric and spatial characterization of polymorphic transitions in caffeine using quasi-isothermal MTDSC and localized thermomechanical analysis.
    Manduva R; Kett VL; Banks SR; Wood J; Reading M; Craig DQ
    J Pharm Sci; 2008 Mar; 97(3):1285-300. PubMed ID: 17694542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of modulated, quasi-isothermal and ultraslow thermal methods as a means of characterizing the α to γ indomethacin polymorphic transformation.
    Qi S; Craig DQ
    Mol Pharm; 2012 May; 9(5):1087-99. PubMed ID: 22449179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches.
    Lai HL; Pitt K; Craig DQ
    Int J Pharm; 2010 Feb; 386(1-2):178-84. PubMed ID: 19932159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of modulated temperature differential scanning calorimetry in the characterisation of a drug molecule exhibiting polymorphic and glass forming tendencies.
    Bottom R
    Int J Pharm; 1999 Dec; 192(1):47-53. PubMed ID: 10572198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC).
    Verdonck E; Schaap K; Thomas LC
    Int J Pharm; 1999 Dec; 192(1):3-20. PubMed ID: 10572194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman detected differential scanning calorimetry of polymorphic transformations in acetaminophen.
    Kauffman JF; Batykefer LM; Tuschel DD
    J Pharm Biomed Anal; 2008 Dec; 48(5):1310-5. PubMed ID: 18930622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of modulated temperature differential scanning calorimetry for the characterisation of food systems.
    De Meuter P; Rahier H; Van Mele B
    Int J Pharm; 1999 Dec; 192(1):77-84. PubMed ID: 10572201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the thermal properties of microcrystalline cellulose by modulated temperature differential scanning calorimetry.
    Picker KM; Hoag SW
    J Pharm Sci; 2002 Feb; 91(2):342-9. PubMed ID: 11835194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications.
    Chi JH; Wu SH; Shu CM
    J Hazard Mater; 2009 Nov; 171(1-3):1145-9. PubMed ID: 19619941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the glass transition temperatures of some new methyl methacrylate copolymers using modulated temperature differential scanning calorimetry (MTDSC).
    Ferrero MC; Velasco MV; Ford JL; Rajabi-Siahboomi AR; Muñoz A; Jiménez-Castellanos MR
    Pharm Res; 1999 Sep; 16(9):1464-9. PubMed ID: 10496666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A; Pyda M
    Carbohydr Res; 2011 Nov; 346(16):2558-66. PubMed ID: 22000766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process induced transformations during tablet manufacturing: phase transition analysis of caffeine using DSC and low frequency micro-Raman spectroscopy.
    Hubert S; Briancon S; Hedoux A; Guinet Y; Paccou L; Fessi H; Puel F
    Int J Pharm; 2011 Nov; 420(1):76-83. PubMed ID: 21884769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry.
    McPhillips H; Craig DQ; Royall PG; Hill VL
    Int J Pharm; 1999 Mar; 180(1):83-90. PubMed ID: 10089295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of micellization from heat-capacity measurements.
    Šarac B; Bešter-Rogač M; Lah J
    Chemphyschem; 2014 Jun; 15(9):1827-33. PubMed ID: 24760780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin.
    Kearns KL; Swallen SF; Ediger MD; Sun Y; Yu L
    J Phys Chem B; 2009 Feb; 113(6):1579-86. PubMed ID: 19154147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation into the thermal behaviour of an amorphous drug using low frequency dielectric spectroscopy and modulated temperature differential scanning calorimetry.
    He R; Craig DQ
    J Pharm Pharmacol; 2001 Jan; 53(1):41-8. PubMed ID: 11206191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of the use of modulated temperature DSC as a means of assessing the relaxation behaviour of amorphous lactose.
    Craig DQ; Barsnes M; Royall PG; Kett VL
    Pharm Res; 2000 Jun; 17(6):696-700. PubMed ID: 10955843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation into the subambient behavior of aqueous mannitol solutions using differential scanning calorimetry, cold stage microscopy, and X-ray diffractometry.
    Kett VL; Fitzpatrick S; Cooper B; Craig DQ
    J Pharm Sci; 2003 Sep; 92(9):1919-29. PubMed ID: 12950009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential scanning calorimetry techniques: applications in biology and nanoscience.
    Gill P; Moghadam TT; Ranjbar B
    J Biomol Tech; 2010 Dec; 21(4):167-93. PubMed ID: 21119929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of high-speed differential scanning calorimetry (Hyper-DSC) in the study of pharmaceutical polymorphs.
    McGregor C; Bines E
    Int J Pharm; 2008 Feb; 350(1-2):48-52. PubMed ID: 17890030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.