These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17694543)

  • 1. Influence of intravesicular pH drift and membrane binding on the liposomal release of a model amine-containing permeant.
    Tejwani RW; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):381-99. PubMed ID: 17694543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liposomal delivery of hydrophobic weak acids: enhancement of drug retention using a high intraliposomal pH.
    Joguparthi V; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):433-54. PubMed ID: 17918731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liposome transport of hydrophobic drugs: gel phase lipid bilayer permeability and partitioning of the lactone form of a hydrophobic camptothecin, DB-67.
    Joguparthi V; Xiang TX; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):400-20. PubMed ID: 17879989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions.
    Modi S; Xiang TX; Anderson BD
    J Control Release; 2012 Sep; 162(2):330-9. PubMed ID: 22800581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of key parameters for a mechanism-based model to predict Doxorubicin release from actively loaded liposomes.
    Csuhai E; Kangarlou S; Xiang TX; Ponta A; Bummer P; Choi D; Anderson BD
    J Pharm Sci; 2015 Mar; 104(3):1087-98. PubMed ID: 25561354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport methods for probing the barrier domain of lipid bilayer membranes.
    Xiang TX; Chen X; Anderson BD
    Biophys J; 1992 Jul; 63(1):78-88. PubMed ID: 1420875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of pH and ring-opening hydrolysis kinetics on liposomal release of topotecan.
    Fugit KD; Anderson BD
    J Control Release; 2014 Jan; 174():88-97. PubMed ID: 24231406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes.
    Devarakonda B; Otto DP; Judefeind A; Hill RA; de Villiers MM
    Int J Pharm; 2007 Dec; 345(1-2):142-53. PubMed ID: 17600643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method.
    Modi S; Anderson BD
    Mol Pharm; 2013 Aug; 10(8):3076-89. PubMed ID: 23758289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the lipid membrane affinity and permeation of drug-like acids: the intriguing effects of cholesterol and charged lipids.
    Thomae AV; Koch T; Panse C; Wunderli-Allenspach H; Krämer SD
    Pharm Res; 2007 Aug; 24(8):1457-72. PubMed ID: 17387599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model analysis of flux enhancement across hairless mouse skin induced by chemical permeation enhancers.
    He N; Warner KS; Higuchi WI; Li SK
    Int J Pharm; 2005 Jun; 297(1-2):9-21. PubMed ID: 15907593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous domains and membrane permeability in phosphatidylcholine-phosphatidic acid rigid vesicles as a function of pH and lipid chain mismatch.
    Karve S; Bajagur Kempegowda G; Sofou S
    Langmuir; 2008 Jun; 24(11):5679-88. PubMed ID: 18471003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape.
    Xiang TX; Anderson BD
    Biophys J; 1998 Dec; 75(6):2658-71. PubMed ID: 9826590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independence of substituent contributions to the transport of small molecule permeants in lipid bilayers.
    Mayer PT; Xiang TX; Anderson BD
    AAPS PharmSci; 2000; 2(2):E14. PubMed ID: 11741230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fatty acids on the permeability barrier of model and biological membranes.
    Arouri A; Lauritsen KE; Nielsen HL; Mouritsen OG
    Chem Phys Lipids; 2016 Oct; 200():139-146. PubMed ID: 27725161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of intraliposomal pH and its effect on membrane partitioning and passive loading of a hydrophobic camptothecin, DB-67.
    Joguparthi V; Feng S; Anderson BD
    Int J Pharm; 2008 Mar; 352(1-2):17-28. PubMed ID: 18065174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilising agent.
    Ali MH; Kirby DJ; Mohammed AR; Perrie Y
    J Pharm Pharmacol; 2010 Nov; 62(11):1646-55. PubMed ID: 21039548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Titratable Amphiphiles in Lipid Membranes by Fluorescence Spectroscopy.
    Pierrat P; Lebeau L
    Langmuir; 2015 Nov; 31(45):12362-71. PubMed ID: 26507074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.