These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17694874)

  • 1. The muscle activation method: an approach to impedance control of brain-machine interfaces through a musculoskeletal model of the arm.
    Kim HK; Carmena JM; Biggs SJ; Hanson TL; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1520-9. PubMed ID: 17694874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.
    Gupta R; Ashe J
    IEEE Trans Neural Syst Rehabil Eng; 2009 Jun; 17(3):254-62. PubMed ID: 19497832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent adaptation of force and impedance in the redundant muscle system.
    Tee KP; Franklin DW; Kawato M; Milner TE; Burdet E
    Biol Cybern; 2010 Jan; 102(1):31-44. PubMed ID: 19936778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on directional information in neural signals for brain-machine interfaces.
    Waldert S; Pistohl T; Braun C; Ball T; Aertsen A; Mehring C
    J Physiol Paris; 2009; 103(3-5):244-54. PubMed ID: 19665554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive user interfaces in complex supervisory tasks.
    Yen GG; Acay D
    ISA Trans; 2009 Apr; 48(2):196-205. PubMed ID: 19084225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories.
    Kistemaker DA; Van Soest AK; Bobbert MF
    J Neurophysiol; 2007 Sep; 98(3):1075-82. PubMed ID: 17615122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying proprioceptive reflexes during position control of the human arm.
    Schouten AC; de Vlugt E; van Hilten JJ; van der Helm FC
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):311-21. PubMed ID: 18232375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence.
    Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S
    IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of brain-machine interfaces during parabolic flight.
    Millàn Jdel R; Ferrez PW; Seidl T
    Int Rev Neurobiol; 2009; 86():189-97. PubMed ID: 19608000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force control strategies while driving electric powered wheelchairs with isometric and movement-sensing joysticks.
    Dicianno BE; Spaeth DM; Cooper RA; Fitzgerald SG; Boninger ML; Brown KW
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):144-50. PubMed ID: 17436887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain interface research for asynchronous control applications.
    Borisoff JF; Mason SG; Birch GE
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):160-4. PubMed ID: 16792283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A switching regime model for the EMG-based control of a robot arm.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):53-63. PubMed ID: 20403787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational method for muscle-path representation in musculoskeletal models.
    Gao F; Damsgaard M; Rasmussen J; Christensen ST
    Biol Cybern; 2002 Sep; 87(3):199-210. PubMed ID: 12200615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse linear regression for reconstructing muscle activity from human cortical fMRI.
    Ganesh G; Burdet E; Haruno M; Kawato M
    Neuroimage; 2008 Oct; 42(4):1463-72. PubMed ID: 18634889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.