These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17695226)

  • 1. A rotaxane mimic of the photoactive yellow protein chromophore environment: effects of hydrogen bonding and mechanical interlocking on a coumaric amide derivative.
    Berná J; Brouwer AM; Fazio SM; Haraszkiewicz N; Leigh DA; Lennon CM
    Chem Commun (Camb); 2007 May; (19):1910-2. PubMed ID: 17695226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coumaric amide rotaxanes: effects of hydrogen bonding and mechanical interlocking on the photochemistry and photophysics.
    Brouwer AM; Fazio SM; Haraszkiewicz N; Leigh DA; Lennon CM
    Photochem Photobiol Sci; 2007 Apr; 6(4):480-6. PubMed ID: 17404644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and protein shifts in the spectrum of the photoactive yellow protein: a time-dependent density functional theory/molecular mechanics study.
    González EM; Guidoni L; Molteni C
    Phys Chem Chem Phys; 2009 Jun; 11(22):4556-63. PubMed ID: 19475175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel photosystem involving protonation and deprotonation processes modelled on a PYP photocycle.
    Matsuhira T; Tsuchihashi K; Yamamoto H; Okamura TA; Ueyama N
    Org Biomol Chem; 2008 Sep; 6(17):3118-26. PubMed ID: 18698471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transduction in the photoactive yellow protein. I. Photon absorption and the isomerization of the chromophore.
    Groenhof G; Lensink MF; Berendsen HJ; Snijders JG; Mark AE
    Proteins; 2002 Aug; 48(2):202-11. PubMed ID: 12112689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral tuning of the photoactive yellow protein chromophore by H-bonding.
    Rajput J; Rahbek DB; Aravind G; Andersen LH
    Biophys J; 2010 Feb; 98(3):488-92. PubMed ID: 20141763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes.
    Groenhof G; Lensink MF; Berendsen HJ; Mark AE
    Proteins; 2002 Aug; 48(2):212-9. PubMed ID: 12112690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio excited-state dynamics of the photoactive yellow protein chromophore.
    Ko C; Levine B; Toniolo A; Manohar L; Olsen S; Werner HJ; Martínez TJ
    J Am Chem Soc; 2003 Oct; 125(42):12710-1. PubMed ID: 14558810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Gas-phase photochemistry of the photoactive yellow protein chromophore trans-p-coumaric acid".
    de Groot M; Buma WJ
    J Phys Chem A; 2005 Jul; 109(27):6135-6. PubMed ID: 16833951
    [No Abstract]   [Full Text] [Related]  

  • 10. Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy.
    Groot ML; van Wilderen LJ; Larsen DS; van der Horst MA; van Stokkum IH; Hellingwerf KJ; van Grondelle R
    Biochemistry; 2003 Sep; 42(34):10054-9. PubMed ID: 12939133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding, tuning and mechanical function of the 4-hydroxy-cinnamic acid chromophore in photoactive yellow protein.
    van der Horst MA; Arents JC; Kort R; Hellingwerf KJ
    Photochem Photobiol Sci; 2007 May; 6(5):571-9. PubMed ID: 17487311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the similarity of the photoabsorption of deprotonated p-coumaric acid in the gas phase and within the photoactive yellow protein.
    Rocha-Rinza T; Sneskov K; Christiansen O; Ryde U; Kongsted J
    Phys Chem Chem Phys; 2011 Jan; 13(4):1585-9. PubMed ID: 21132197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional tuning of photoactive yellow protein by active site residue 46.
    Philip AF; Eisenman KT; Papadantonakis GA; Hoff WD
    Biochemistry; 2008 Dec; 47(52):13800-10. PubMed ID: 19102703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the absorption maxima of the photoactive yellow protein resolved via ab initio multiconfigurational methods.
    Coto PB; Martí S; Oliva M; Olivucci M; Merchán M; Andrés J
    J Phys Chem B; 2008 Jun; 112(24):7153-6. PubMed ID: 18507438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-isomerization of the isolated photoactive yellow protein chromophore: what comes before the primary step?
    Anstöter CS; Curchod BFE; Verlet JRR
    Phys Chem Chem Phys; 2022 Jan; 24(3):1305-1309. PubMed ID: 34984423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive circular dichroism marker for the chromophore environment of photoactive yellow protein: assignment of the 307 and 318 nm bands to the n --> pi* transition of the carbonyl.
    Borucki B; Otto H; Meyer TE; Cusanovich MA; Heyn MP
    J Phys Chem B; 2005 Jan; 109(1):629-33. PubMed ID: 16851055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four resonance structures elucidate double-bond isomerisation of a biological chromophore.
    Gromov EV; Domratcheva T
    Phys Chem Chem Phys; 2020 Apr; 22(16):8535-8544. PubMed ID: 32301950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily.
    Imamoto Y; Kataoka M
    Photochem Photobiol; 2007; 83(1):40-9. PubMed ID: 16939366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the hydrogen-bond network around the chromophore of photoactive yellow protein in the ground and excited states.
    Mizuno M; Kamikubo H; Kataoka M; Mizutani Y
    J Phys Chem B; 2011 Jul; 115(29):9306-10. PubMed ID: 21688774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress tensor analysis of the protein quake of photoactive yellow protein.
    Koike K; Kawaguchi K; Yamato T
    Phys Chem Chem Phys; 2008 Mar; 10(10):1400-5. PubMed ID: 18309395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.