These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17695806)

  • 21. Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy.
    Yamagishi S; Takeuchi M; Inagaki Y; Nakamura K; Imaizumi T
    Int J Clin Pharmacol Res; 2003; 23(4):129-34. PubMed ID: 15224502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diabetic nephropathy: from mechanisms to rational therapies.
    Giunti S; Barit D; Cooper ME
    Minerva Med; 2006 Jun; 97(3):241-62. PubMed ID: 16855519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts.
    Vasko R; Koziolek M; Ikehata M; Rastaldi MP; Jung K; Schmid H; Kretzler M; Müller GA; Strutz F
    Am J Physiol Renal Physiol; 2009 Jun; 296(6):F1452-63. PubMed ID: 19279131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diabetic neuropathy and oxidative stress.
    Pop-Busui R; Sima A; Stevens M
    Diabetes Metab Res Rev; 2006; 22(4):257-73. PubMed ID: 16506271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced glycosylated end products and hyperglycemia in the pathogenesis of diabetic complications.
    Friedman EA
    Diabetes Care; 1999 Mar; 22 Suppl 2():B65-71. PubMed ID: 10097902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diabetic vascular dysfunction: links to glucose-induced reductive stress and VEGF.
    Tilton RG
    Microsc Res Tech; 2002 Jun; 57(5):390-407. PubMed ID: 12112445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mediators of hyperglycemia and the pathogenesis of matrix accumulation in diabetic renal disease.
    Ziyadeh FN
    Miner Electrolyte Metab; 1995; 21(4-5):292-302. PubMed ID: 7565478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microvascular complications of diabetes.
    He Z; King GL
    Endocrinol Metab Clin North Am; 2004 Mar; 33(1):215-38, xi-xii. PubMed ID: 15053904
    [No Abstract]   [Full Text] [Related]  

  • 29. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy.
    Sharma K; Ziyadeh FN
    Semin Nephrol; 1997 Mar; 17(2):80-92. PubMed ID: 9148380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of oxidative stress in the development of diabetic nephropathy.
    Ha H; Kim KH
    Kidney Int Suppl; 1995 Sep; 51():S18-21. PubMed ID: 7474682
    [No Abstract]   [Full Text] [Related]  

  • 31. Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy.
    Palm F
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):997-1001. PubMed ID: 17002679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Diabetic microangiopathy--its biochemical bases].
    Kawazu S; Tomono S
    Nihon Rinsho; 1991 Feb; 49 Suppl():34-42. PubMed ID: 1827848
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of KIOM-79 on hyperglycemia and diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats.
    Kim CS; Sohn EJ; Kim YS; Jung DH; Jang DS; Lee YM; Kim DH; Kim JS
    J Ethnopharmacol; 2007 May; 111(2):240-7. PubMed ID: 17194556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From molecular footprints of disease to new therapeutic interventions in diabetic nephropathy.
    Miyata T; Yamamoto M; Izuhara Y
    Ann N Y Acad Sci; 2005 Jun; 1043():740-9. PubMed ID: 16037301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diabetic nephropathy in childhood and adolescents.
    Chiarelli F; Casani A; Tumini S; Kordonouri O; Danne T
    Diabetes Nutr Metab; 1999 Apr; 12(2):144-53. PubMed ID: 10554897
    [No Abstract]   [Full Text] [Related]  

  • 36. Synergistic contributions of carbonyl stress and megsin in diabetic nephropathy.
    Inagi R; Nangaku M; Miyata T
    Ann N Y Acad Sci; 2005 Jun; 1043():605-8. PubMed ID: 16037283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diabetic nephropathy: where hemodynamics meets metabolism.
    Forbes JM; Fukami K; Cooper ME
    Exp Clin Endocrinol Diabetes; 2007 Feb; 115(2):69-84. PubMed ID: 17318765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. XLF-III-43, a novel coumarin-aspirin compound, prevents diabetic nephropathy in rats via inhibiting advanced glycation end products.
    Li H; Zheng X; Wang H; Zhang Y; Xin H; Chen X
    Eur J Pharmacol; 2010 Feb; 627(1-3):340-7. PubMed ID: 19895808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular understanding of hyperglycemia's adverse effects for diabetic complications.
    Sheetz MJ; King GL
    JAMA; 2002 Nov; 288(20):2579-88. PubMed ID: 12444865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How does hyperglycaemia predispose to diabetic nephropathy?
    Wardle EN
    QJM; 1996 Dec; 89(12):943-51. PubMed ID: 9015488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.