These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 17695907)
1. Association with natural organic matter enhances the sunlight-mediated inactivation of MS2 coliphage by singlet oxygen. Kohn T; Grandbois M; McNeill K; Nelson KL Environ Sci Technol; 2007 Jul; 41(13):4626-32. PubMed ID: 17695907 [TBL] [Abstract][Full Text] [Related]
2. Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Kohn T; Nelson KL Environ Sci Technol; 2007 Jan; 41(1):192-7. PubMed ID: 17265947 [TBL] [Abstract][Full Text] [Related]
3. Role of temperature and Suwannee River natural organic matter on inactivation kinetics of rotavirus and bacteriophage MS2 by solar irradiation. Romero OC; Straub AP; Kohn T; Nguyen TH Environ Sci Technol; 2011 Dec; 45(24):10385-93. PubMed ID: 22017181 [TBL] [Abstract][Full Text] [Related]
4. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine. Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479 [TBL] [Abstract][Full Text] [Related]
5. Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers. Silverman AI; Peterson BM; Boehm AB; McNeill K; Nelson KL Environ Sci Technol; 2013 Feb; 47(4):1870-8. PubMed ID: 23384052 [TBL] [Abstract][Full Text] [Related]
6. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter. Zhang D; Yan S; Song W Environ Sci Technol; 2014 Nov; 48(21):12645-53. PubMed ID: 25314220 [TBL] [Abstract][Full Text] [Related]
7. Sunlight inactivation of somatic coliphage in the presence of natural organic matter. Sun CX; Kitajima M; Gin KY Sci Total Environ; 2016 Jan; 541():1-7. PubMed ID: 26386910 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight. Nieto-Juarez JI; Pierzchła K; Sienkiewicz A; Kohn T Environ Sci Technol; 2010 May; 44(9):3351-6. PubMed ID: 20356037 [TBL] [Abstract][Full Text] [Related]
9. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation. Rosado-Lausell SL; Wang H; Gutiérrez L; Romero-Maraccini OC; Niu XZ; Gin KY; Croué JP; Nguyen TH Water Res; 2013 Sep; 47(14):4869-79. PubMed ID: 23866126 [TBL] [Abstract][Full Text] [Related]
10. Effects of solution chemistry on the sunlight inactivation of particles-associated viruses MS2. Wu X; Feng Z; Yuan B; Zhou Z; Li F; Sun W Colloids Surf B Biointerfaces; 2018 Feb; 162():179-185. PubMed ID: 29190469 [TBL] [Abstract][Full Text] [Related]
11. Photoinactivation of virus on iron-oxide coated sand: enhancing inactivation in sunlit waters. Pecson BM; Decrey L; Kohn T Water Res; 2012 Apr; 46(6):1763-70. PubMed ID: 22264797 [TBL] [Abstract][Full Text] [Related]
12. Quantifying interactions between singlet oxygen and aquatic fulvic acids. Cory RM; Cotner JB; McNeill K Environ Sci Technol; 2009 Feb; 43(3):718-23. PubMed ID: 19245007 [TBL] [Abstract][Full Text] [Related]
13. Indirect photodegradation of dissolved free amino acids: the contribution of singlet oxygen and the differential reactivity of DOM from various sources. Boreen AL; Edhlund BL; Cotner JB; McNeill K Environ Sci Technol; 2008 Aug; 42(15):5492-8. PubMed ID: 18754466 [TBL] [Abstract][Full Text] [Related]
14. A modeling approach to estimate the solar disinfection of viral indicator organisms in waste stabilization ponds and surface waters. Kohn T; Mattle MJ; Minella M; Vione D Water Res; 2016 Jan; 88():912-922. PubMed ID: 26615386 [TBL] [Abstract][Full Text] [Related]
15. Sunlight inactivation of MS2 coliphage in the absence of photosensitizers: modeling the endogenous inactivation rate using a photoaction spectrum. Nguyen MT; Silverman AI; Nelson KL Environ Sci Technol; 2014 Apr; 48(7):3891-8. PubMed ID: 24575954 [TBL] [Abstract][Full Text] [Related]
16. Competitive co-adsorption of bacteriophage MS2 and natural organic matter onto multiwalled carbon nanotubes. Jacquin C; Yu D; Sander M; Domagala KW; Traber J; Morgenroth E; Julian TR Water Res X; 2020 Dec; 9():100058. PubMed ID: 32613183 [TBL] [Abstract][Full Text] [Related]
17. Photochemical Production of Singlet Oxygen from Dissolved Organic Matter in Ice. Fede A; Grannas AM Environ Sci Technol; 2015 Nov; 49(21):12808-15. PubMed ID: 26460930 [TBL] [Abstract][Full Text] [Related]
18. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Nieto-Juarez JI; Kohn T Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031 [TBL] [Abstract][Full Text] [Related]
19. The inactivation of bacteriophage MS2 by sodium hypochlorite in the presence of particles. Tang A; Bi X; Li X; Li F; Liao X; Zou J; Sun W; Yuan B Chemosphere; 2021 Mar; 266():129191. PubMed ID: 33310358 [TBL] [Abstract][Full Text] [Related]
20. Conceptual model and experimental framework to determine the contributions of direct and indirect photoreactions to the solar disinfection of MS2, phiX174, and adenovirus. Mattle MJ; Vione D; Kohn T Environ Sci Technol; 2015 Jan; 49(1):334-42. PubMed ID: 25419957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]