BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17695914)

  • 1. Regional air quality: local and interstate impacts of NO(x) and SO2 emissions on ozone and fine particulate matter in the eastern United States.
    Bergin MS; Shih JS; Krupnick AJ; Boylan JW; Wilkinson JG; Odman MT; Russell AG
    Environ Sci Technol; 2007 Jul; 41(13):4677-89. PubMed ID: 17695914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.
    Tong DQ; Muller NZ; Kan H; Mendelsohn RO
    Environ Int; 2009 Nov; 35(8):1109-17. PubMed ID: 19656569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas.
    Hou X; Strickland MJ; Liao KJ
    Environ Res; 2015 Feb; 137():475-84. PubMed ID: 25701729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of a mobile Flux Laboratory for the Atmospheric Measurement of Emissions (FLAME) to assess emissions inventories.
    Moore TO; Doughty DC; Marr LC
    J Environ Monit; 2009 Feb; 11(2):259-68. PubMed ID: 19212582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Summertime state-level source-receptor relationships between nitrogen oxides emissions and surface ozone concentrations over the continental United States.
    Tong DQ; Mauzerall DL
    Environ Sci Technol; 2008 Nov; 42(21):7976-84. PubMed ID: 19031890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change.
    Campbell P; Zhang Y; Yan F; Lu Z; Streets D
    Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.
    Odman MT; Hu Y; Russell AG; Hanedar A; Boylan JW; Brewer PF
    J Environ Manage; 2009 Jul; 90(10):3155-68. PubMed ID: 19556055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of inorganic fine particulate matter to emission changes of sulfur dioxide and ammonia: the eastern United States as a case study.
    Tsimpidi AP; Karydis VA; Pandis SN
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1489-98. PubMed ID: 18200934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expected ozone benefits of reducing nitrogen oxide (NO
    Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR
    J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accountability analysis of title IV phase 2 of the 1990 Clean Air Act Amendments.
    Morgenstern RD; Harrington W; Shih JS; Bell ML;
    Res Rep Health Eff Inst; 2012 Nov; (168):5-35. PubMed ID: 23409509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of natural emissions to ozone and PM2.5 as simulated by the Community Multiscale Air Quality (CMAQ) model.
    Mueller SF; Mallard JW
    Environ Sci Technol; 2011 Jun; 45(11):4817-23. PubMed ID: 21545154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Management of NOx and SO2 Emissions in the Texas and Mid-Atlantic Electric Power Systems and Implications for Air Quality.
    McDonald-Buller E; Kimura Y; Craig M; McGaughey G; Allen D; Webster M
    Environ Sci Technol; 2016 Feb; 50(3):1611-9. PubMed ID: 26727552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury.
    Castro MS; Sherwell J
    Environ Sci Technol; 2015 Dec; 49(24):14000-7. PubMed ID: 26606506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area.
    Mendoza-Dominguez A; Wilkinson JG; Yang YJ; Russell AG
    J Air Waste Manag Assoc; 2000 Jan; 50(1):21-31. PubMed ID: 10680362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air quality accountability: Developing long-term daily time series of pollutant changes and uncertainties in Atlanta, Georgia resulting from the 1990 Clean Air Act Amendments.
    Henneman LRF; Liu C; Chang H; Mulholland J; Tolbert P; Russell A
    Environ Int; 2019 Feb; 123():522-534. PubMed ID: 30622077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source apportionment of emissions from light-duty gasoline vehicles and other sources in the United States for ozone and particulate matter.
    Vijayaraghavan K; Lindhjem C; Koo B; DenBleyker A; Tai E; Shah T; Alvarez Y; Yarwood G
    J Air Waste Manag Assoc; 2016 Feb; 66(2):98-119. PubMed ID: 26563640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-source impact analysis using three-dimensional air quality models.
    Bergin MS; Russell AG; Odman MT; Cohan DS; Chameides WL
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1351-9. PubMed ID: 18939782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional impacts of oil and gas development on ozone formation in the western United States.
    Rodriguez MA; Barna MG; Moore T
    J Air Waste Manag Assoc; 2009 Sep; 59(9):1111-8. PubMed ID: 19785277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis.
    Cohan DS; Hakami A; Hu Y; Russell AG
    Environ Sci Technol; 2005 Sep; 39(17):6739-48. PubMed ID: 16190234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.