These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17695995)

  • 1. Functional magnetic resonance imaging of brain activity during chewing and occlusion by natural teeth and occlusal splints.
    Kordass B; Lucas C; Huetzen D; Zimmermann C; Gedrange T; Langner S; Domin M; Hosten N
    Ann Anat; 2007; 189(4):371-6. PubMed ID: 17695995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cerebral representation of temporomandibular joint occlusion and its alternation by occlusal splints.
    Lotze M; Lucas C; Domin M; Kordass B
    Hum Brain Mapp; 2012 Dec; 33(12):2984-93. PubMed ID: 22102437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry of fMRI activation in the primary sensorimotor cortex during unilateral chewing.
    Lotze M; Domin M; Kordass B
    Clin Oral Investig; 2017 May; 21(4):967-973. PubMed ID: 27221516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging.
    Takada T; Miyamoto T
    Neurosci Lett; 2004 Apr; 360(3):137-40. PubMed ID: 15082152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of mastication on occlusal parameters in healthy volunteers.
    Sierpinska T; Golebiewska M; Lapuc M
    Adv Med Sci; 2008; 53(2):316-20. PubMed ID: 19095582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A clinical study of the functional significance of the occlusal contacts on chewing movements].
    Nakamura Y
    Osaka Daigaku Shigaku Zasshi; 1990 Dec; 35(2):486-516. PubMed ID: 2134878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of occlusal vertical dimension on the masticatory performance during chewing with maxillary splints.
    Olthoff LW; van der Glas HW; van der Bilt A
    J Oral Rehabil; 2007 Aug; 34(8):560-5. PubMed ID: 17650165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occlusal interference during mastication can cause pathological tooth mobility.
    Ishigaki S; Kurozumi T; Morishige E; Yatani H
    J Periodontal Res; 2006 Jun; 41(3):189-92. PubMed ID: 16677287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of chewing-side preference on human brain activity during tooth clenching: an fMRI study.
    Jiang H; Liu H; Liu G; Jin Z; Liu X
    J Oral Rehabil; 2010 Dec; 37(12):877-83. PubMed ID: 20653828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cortical activation in craniomandibular disorders during splint therapy - a single subject fMRI study.
    Lickteig R; Lotze M; Lucas C; Domin M; Kordass B
    Ann Anat; 2012 Mar; 194(2):212-5. PubMed ID: 22100455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the occlusal profile on the masticatory performance of healthy dentate subjects.
    Giannakopoulos NN; Wirth A; Braun S; Eberhard L; Schindler HJ; Hellmann D
    Int J Prosthodont; 2014; 27(4):383-9. PubMed ID: 25010884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuronal activities related to right-sided mastication detected with functional magnetic resonance imaging].
    Zhang QS; Liu HC; Jin Z; Chen Y; Li K
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2005 Sep; 40(5):356-8. PubMed ID: 16255909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between pattern of masticatory path and state of lateral occlusal contact.
    Shiga H; Kobayashi Y; Arakawa I; Yokoyama M; Tanaka A
    J Oral Rehabil; 2009 Apr; 36(4):250-6. PubMed ID: 19220716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral activation related to the control of mastication during changes in food hardness.
    Takahashi T; Miyamoto T; Terao A; Yokoyama A
    Neuroscience; 2007 Mar; 145(3):791-4. PubMed ID: 17320301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonfunctional and functional occlusal contacts: a review of the literature.
    Woda A; Vigneron P; Kay D
    J Prosthet Dent; 1979 Sep; 42(3):335-41. PubMed ID: 383965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between occlusion and human brain function activities.
    Ohkubo C; Morokuma M; Yoneyama Y; Matsuda R; Lee JS
    J Oral Rehabil; 2013 Feb; 40(2):119-29. PubMed ID: 22624951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the masticatory cycle after treatment of posterior crossbite in children aged 4 to 5 years.
    Neto GP; Puppin-Rontani RM; Garcia RC
    Am J Orthod Dentofacial Orthop; 2007 Apr; 131(4):464-72. PubMed ID: 17418712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between masticatory cycle morphology and unilateral crossbite in the primary dentition.
    Sever E; Marion L; Ovsenik M
    Eur J Orthod; 2011 Dec; 33(6):620-7. PubMed ID: 21118909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional brain activity during jaw clenching with natural teeth and with occlusal splints: a preliminary functional MRI study.
    Ariji Y; Koyama S; Sakuma S; Nakayama M; Ariji E
    Cranio; 2016 May; 34(3):188-94. PubMed ID: 26089109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta-analysis of brain mechanisms of chewing and clenching movements.
    Lin CS
    J Oral Rehabil; 2018 Aug; 45(8):627-639. PubMed ID: 29782041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.