These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 17696156)
1. A bFGF/TCP-composite inhibits bone formation in a sheep model. Maus U; Andereya S; Ohnsorge JA; Gravius S; Siebert CH; Niedhart C J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):87-92. PubMed ID: 17696156 [TBL] [Abstract][Full Text] [Related]
2. The effect of basic fibroblast growth factor on bone regeneration when released from a novel in situ setting tricalcium phosphate cement. Niedhart C; Maus U; Miltner O; Gräber HG; Niethard FU; Siebert CH J Biomed Mater Res A; 2004 Jun; 69(4):680-5. PubMed ID: 15162410 [TBL] [Abstract][Full Text] [Related]
3. BMP-2 incorporated in a tricalcium phosphate bone substitute enhances bone remodeling in sheep. Maus U; Andereya S; Gravius S; Ohnsorge JA; Niedhart C; Siebert CH J Biomater Appl; 2008 May; 22(6):559-76. PubMed ID: 18194994 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of bone formation with an in situ setting tricalcium phosphate/rhBMP-2 composite in rats. Niedhart C; Maus U; Redmann E; Schmidt-Rohlfing B; Niethard FU; Siebert CH J Biomed Mater Res A; 2003 Apr; 65(1):17-23. PubMed ID: 12635149 [TBL] [Abstract][Full Text] [Related]
5. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. Su CC; Kao CT; Hung CJ; Chen YJ; Huang TH; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():156-63. PubMed ID: 24582235 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a resorbable, in situ setting bone substitute in a sheep model. Niedhart C; Maus U; Piroth W; Miltner O; Schmidt-Rohlfing B; Siebert CH J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):123-9. PubMed ID: 15368236 [TBL] [Abstract][Full Text] [Related]
7. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model. Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282 [TBL] [Abstract][Full Text] [Related]
8. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Bohner M; Theiss F; Apelt D; Hirsiger W; Houriet R; Rizzoli G; Gnos E; Frei C; Auer JA; von Rechenberg B Biomaterials; 2003 Sep; 24(20):3463-74. PubMed ID: 12809775 [TBL] [Abstract][Full Text] [Related]
9. Microencapsulated rBMMSCs/calcium phosphate cement for bone formation in vivo. Wang J; Qiao P; Dong L; Li F; Xu T; Xie Q Biomed Mater Eng; 2014; 24(1):835-43. PubMed ID: 24211970 [TBL] [Abstract][Full Text] [Related]
10. Repair of calvarial defects in rats by prefabricated hydroxyapatite cement implants. Schliephake H; Gruber R; Dard M; Wenz R; Scholz S J Biomed Mater Res A; 2004 Jun; 69(3):382-90. PubMed ID: 15127384 [TBL] [Abstract][Full Text] [Related]
11. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Hong SJ; Kim CS; Han DK; Cho IH; Jung UW; Choi SH; Kim CK; Cho KS Biomaterials; 2006 Jul; 27(20):3810-6. PubMed ID: 16574220 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
13. Investigation as to the osteoinductivity of macroporous calcium phosphate cement in goats. Bodde EW; Cammaert CT; Wolke JG; Spauwen PH; Jansen JA J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):161-8. PubMed ID: 17318825 [TBL] [Abstract][Full Text] [Related]
14. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Tsai CH; Lin RM; Ju CP; Chern Lin JH Biomaterials; 2008 Mar; 29(8):984-93. PubMed ID: 18096221 [TBL] [Abstract][Full Text] [Related]
15. Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model. Kobayashi H; Fujishiro T; Belkoff SM; Kobayashi N; Turner AS; Seim HB; Zitelli J; Hawkins M; Bauer TW J Biomed Mater Res A; 2009 Mar; 88(4):880-8. PubMed ID: 18381636 [TBL] [Abstract][Full Text] [Related]
16. The effect of the microstructure of beta-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Okuda T; Ioku K; Yonezawa I; Minagi H; Kawachi G; Gonda Y; Murayama H; Shibata Y; Minami S; Kamihira S; Kurosawa H; Ikeda T Biomaterials; 2007 Jun; 28(16):2612-21. PubMed ID: 17316789 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility and resorption of a brushite calcium phosphate cement. Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367 [TBL] [Abstract][Full Text] [Related]
18. A histological evaluation on osteogenesis and resorption of methotrexate-loaded calcium phosphate cement in vivo. Li D; Yang Z; Li X; Li Z; Li J; Yang J Biomed Mater; 2010 Apr; 5(2):25007. PubMed ID: 20339171 [TBL] [Abstract][Full Text] [Related]
19. Periodontal regeneration following application of basic fibroblast growth factor-2 in combination with beta tricalcium phosphate in class III furcation defects in dogs. Saito A; Saito E; Kuboki Y; Kimura M; Nakajima T; Yuge F; Kato T; Honma Y; Takahashi T; Ohata N Dent Mater J; 2013; 32(2):256-62. PubMed ID: 23538761 [TBL] [Abstract][Full Text] [Related]
20. [Animal implantation with a new type of chitosan microspheres/calcium phosphate cement]. Meng D; Xie QF Beijing Da Xue Xue Bao Yi Xue Ban; 2009 Feb; 41(1):80-5. PubMed ID: 19221571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]