These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17696287)

  • 1. Online learning of objects in a biologically motivated visual architecture.
    Wersing H; Kirstein S; Götting M; Brandl H; Dunn M; Mikhailova I; Goerick C; Steil J; Ritter H; Körner E
    Int J Neural Syst; 2007 Aug; 17(4):219-30. PubMed ID: 17696287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biologically motivated visual memory architecture for online learning of objects.
    Kirstein S; Wersing H; Körner E
    Neural Netw; 2008 Jan; 21(1):65-77. PubMed ID: 18182276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive object recognition model using incremental feature representation and hierarchical classification.
    Jeong S; Lee M
    Neural Netw; 2012 Jan; 25(1):130-40. PubMed ID: 21783342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational object recognition: a biologically motivated approach.
    Kietzmann TC; Lange S; Riedmiller M
    Biol Cybern; 2009 Jan; 100(1):59-79. PubMed ID: 19089445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning optimized features for hierarchical models of invariant object recognition.
    Wersing H; Körner E
    Neural Comput; 2003 Jul; 15(7):1559-88. PubMed ID: 12816566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual recognition and inference using dynamic overcomplete sparse learning.
    Murray JF; Kreutz-Delgado K
    Neural Comput; 2007 Sep; 19(9):2301-52. PubMed ID: 17650062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invariant object recognition with trace learning and multiple stimuli present during training.
    Stringer SM; Rolls ET; Tromans JM
    Network; 2007 Jun; 18(2):161-87. PubMed ID: 17966074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to recognize objects on the fly: a neurally based dynamic field approach.
    Faubel C; Schöner G
    Neural Netw; 2008 May; 21(4):562-76. PubMed ID: 18501555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid learning network for shift, orientation, and scaling invariant pattern recognition.
    Wang R
    Network; 2001 Nov; 12(4):493-512. PubMed ID: 11762901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning invariant object recognition in the visual system with continuous transformations.
    Stringer SM; Perry G; Rolls ET; Proske JH
    Biol Cybern; 2006 Feb; 94(2):128-42. PubMed ID: 16369795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquisition of nonlinear forward optics in generative models: two-stage "downside-up" learning for occluded vision.
    Tajima S; Watanabe M
    Neural Netw; 2011 Mar; 24(2):148-58. PubMed ID: 21094592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust object recognition with cortex-like mechanisms.
    Serre T; Wolf L; Bileschi S; Riesenhuber M; Poggio T
    IEEE Trans Pattern Anal Mach Intell; 2007 Mar; 29(3):411-26. PubMed ID: 17224612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time unconstrained object recognition: a processing pipeline based on the mammalian visual system.
    Aguilar M; Peot MA; Zhou J; Simons S; Liao Y; Metwalli N; Anderson MB
    IEEE Pulse; 2012 Mar; 3(2):53-6. PubMed ID: 22481747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition.
    Soh H; Demiris Y
    IEEE Trans Haptics; 2014; 7(4):512-25. PubMed ID: 25532151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning viewpoint invariant object representations using a temporal coherence principle.
    Einhäuser W; Hipp J; Eggert J; Körner E; König P
    Biol Cybern; 2005 Jul; 93(1):79-90. PubMed ID: 16021516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning transform invariant object recognition in the visual system with multiple stimuli present during training.
    Stringer SM; Rolls ET
    Neural Netw; 2008 Sep; 21(7):888-903. PubMed ID: 18440774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invariant visual object recognition: a model, with lighting invariance.
    Rolls ET; Stringer SM
    J Physiol Paris; 2006; 100(1-3):43-62. PubMed ID: 17071062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common Object Representations for Visual Production and Recognition.
    Fan JE; Yamins DLK; Turk-Browne NB
    Cogn Sci; 2018 Nov; 42(8):2670-2698. PubMed ID: 30125986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.