These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17696333)

  • 1. Crystal structure of the anthrax drug target, Bacillus anthracis dihydrofolate reductase.
    Bennett BC; Xu H; Simmerman RF; Lee RE; Dealwis CG
    J Med Chem; 2007 Sep; 50(18):4374-81. PubMed ID: 17696333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of 7,8-dihydropteroate synthase from Bacillus anthracis: mechanism and novel inhibitor design.
    Babaoglu K; Qi J; Lee RE; White SW
    Structure; 2004 Sep; 12(9):1705-17. PubMed ID: 15341734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structure of the ternary MTX.NADPH complex of the anthrax dihydrofolate reductase: a pharmacophore for dual-site inhibitor design.
    Bennett BC; Wan Q; Ahmad MF; Langan P; Dealwis CG
    J Struct Biol; 2009 May; 166(2):162-71. PubMed ID: 19374017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH.
    Cody V; Luft JR; Pangborn W
    Acta Crystallogr D Biol Crystallogr; 2005 Feb; 61(Pt 2):147-55. PubMed ID: 15681865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional cloning of Bacillus anthracis dihydrofolate reductase and confirmation of natural resistance to trimethoprim.
    Barrow EW; Bourne PC; Barrow WW
    Antimicrob Agents Chemother; 2004 Dec; 48(12):4643-9. PubMed ID: 15561838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate.
    Senkovich O; Schormann N; Chattopadhyay D
    Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):704-16. PubMed ID: 19564691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs.
    Li R; Sirawaraporn R; Chitnumsub P; Sirawaraporn W; Wooden J; Athappilly F; Turley S; Hol WG
    J Mol Biol; 2000 Jan; 295(2):307-23. PubMed ID: 10623528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted mutations of Bacillus anthracis dihydrofolate reductase condense complex structure−activity relationships.
    Beierlein JM; Karri NG; Anderson AC
    J Med Chem; 2010 Oct; 53(20):7327-36. PubMed ID: 20882962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the BcZBP, a zinc-binding protein from Bacillus cereus.
    Fadouloglou VE; Deli A; Glykos NM; Psylinakis E; Bouriotis V; Kokkinidis M
    FEBS J; 2007 Jun; 274(12):3044-54. PubMed ID: 17501983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 2.13 A structure of E. coli dihydrofolate reductase bound to a novel competitive inhibitor reveals a new binding surface involving the M20 loop region.
    Summerfield RL; Daigle DM; Mayer S; Mallik D; Hughes DW; Jackson SG; Sulek M; Organ MG; Brown ED; Junop MS
    J Med Chem; 2006 Nov; 49(24):6977-86. PubMed ID: 17125251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of sulfadoxine resistance with structural models of the bifunctional Plasmodium falciparum dihydropterin pyrophosphokinase-dihydropteroate synthase.
    de Beer TA; Louw AI; Joubert F
    Bioorg Med Chem; 2006 Jul; 14(13):4433-43. PubMed ID: 16517168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate reductase: toward the identification of new potent drug leads.
    Joska TM; Anderson AC
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3435-43. PubMed ID: 17005826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim.
    Heaslet H; Harris M; Fahnoe K; Sarver R; Putz H; Chang J; Subramanyam C; Barreiro G; Miller JR
    Proteins; 2009 Aug; 76(3):706-17. PubMed ID: 19280600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the conformation of trimethoprim in the binding pocket of bovine dihydrofolate reductase from a STD-NMR intensity-restrained CORCEMA-ST optimization.
    Jayalakshmi V; Krishna NR
    J Am Chem Soc; 2005 Oct; 127(40):14080-4. PubMed ID: 16201830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis.
    Giacoppo JO; Mancini DT; Guimarães AP; Gonçalves AS; da Cunha EF; França TC; Ramalho TC
    Eur J Med Chem; 2015 Feb; 91():63-71. PubMed ID: 24985033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic and crystallographic studies of a new inhibitor series targeting Bacillus anthracis dihydrofolate reductase.
    Beierlein JM; Frey KM; Bolstad DB; Pelphrey PM; Joska TM; Smith AE; Priestley ND; Wright DL; Anderson AC
    J Med Chem; 2008 Dec; 51(23):7532-40. PubMed ID: 19007108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural adaptation of an interacting non-native C-terminal helical extension revealed in the crystal structure of NAD+ synthetase from Bacillus anthracis.
    McDonald HM; Pruett PS; Deivanayagam C; Protasevich II; Carson WM; DeLucas LJ; Brouillette WJ; Brouillette CG
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):891-905. PubMed ID: 17642516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro efficacy of new antifolates against trimethoprim-resistant Bacillus anthracis.
    Barrow EW; Dreier J; Reinelt S; Bourne PC; Barrow WW
    Antimicrob Agents Chemother; 2007 Dec; 51(12):4447-52. PubMed ID: 17875993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into DHFR interactions: analysis of Pneumocystis carinii and mouse DHFR complexes with NADPH and two highly potent 5-(omega-carboxy(alkyloxy) trimethoprim derivatives reveals conformational correlations with activity and novel parallel ring stacking interactions.
    Cody V; Pace J; Chisum K; Rosowsky A
    Proteins; 2006 Dec; 65(4):959-69. PubMed ID: 17019704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing methotrexate resistance by combination of active-site mutations in human dihydrofolate reductase.
    Volpato JP; Fossati E; Pelletier JN
    J Mol Biol; 2007 Oct; 373(3):599-611. PubMed ID: 17868689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.