These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

836 related articles for article (PubMed ID: 17696364)

  • 1. The conformation of H,K-ATPase determines the nucleoside triphosphate (NTP) selectivity for active proton transport.
    Reenstra WW; Crothers J; Forte JG
    Biochemistry; 2007 Sep; 46(35):10145-52. PubMed ID: 17696364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide specificity of the E2K----E1K transition in (Na+ + K+)-ATPase as probed with tryptic inactivation and fragmentation.
    Schuurmans Stekhoven FM; Swarts HG; Zhao RS; de Pont JJ
    Biochim Biophys Acta; 1986 Oct; 861(2):259-66. PubMed ID: 3019402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucine 332 at the boundary between the fourth transmembrane segment and the cytoplasmic domain of Na+,K+-ATPase plays a pivotal role in the ion translocating conformational changes.
    Vilsen B
    Biochemistry; 1997 Oct; 36(43):13312-24. PubMed ID: 9341223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The regulation of Na, K-ATPase activity by the substrate].
    Boldyrev AA; Lopina OD; Fedosova NU
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1990; (6):106-20. PubMed ID: 2169908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms.
    Vilsen B; Andersen JP
    Biochemistry; 1998 Aug; 37(31):10961-71. PubMed ID: 9692989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consequences of mutations to the phosphorylation site of the alpha-subunit of Na, K-ATPase for ATP binding and E1-E2 conformational equilibrium.
    Pedersen PA; Rasmussen JH; Jørgensen PL
    Biochemistry; 1996 Dec; 35(50):16085-93. PubMed ID: 8973179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the distance change between cysteine-457 and the nucleotide binding site when sodium pump changes conformation from E1 to E2 by fluorescence energy transfer measurements.
    Lin SH; Faller LD
    Biochemistry; 1996 Jun; 35(25):8419-28. PubMed ID: 8679600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residues within transmembrane domains 4 and 6 of the Na,K-ATPase alpha subunit are important for Na+ selectivity.
    Sánchez G; Blanco G
    Biochemistry; 2004 Jul; 43(28):9061-74. PubMed ID: 15248763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Active transport of Na+ by modified Na,K-ATPase].
    Boldyrev AA; Svinukhova IA
    Biokhimiia; 1986 Aug; 51(8):1398-405. PubMed ID: 3021242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport enzymes and renal tubular acidosis.
    Mujais SK
    Semin Nephrol; 1998 Jan; 18(1):74-82. PubMed ID: 9459290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase.
    Hilge M; Siegal G; Vuister GW; Güntert P; Gloor SM; Abrahams JP
    Nat Struct Biol; 2003 Jun; 10(6):468-74. PubMed ID: 12730684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Existence of ADP- and KCl-insensitive phosphoenzyme intermediate of Na+,K(+)-ATPase at alkaline Ph.
    Siagian RR; Hara Y; Nakao M
    Biochem Int; 1990 Oct; 22(1):67-74. PubMed ID: 2177987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup.
    Okamura H; Yasuhara JC; Fambrough DM; Takeyasu K
    J Membr Biol; 2003 Jan; 191(1):13-24. PubMed ID: 12532273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The reaction mechanism of Na, K-ATPase].
    Robinson JD; Guerra M; Davis RL; Steinberg M
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1990; (6):97-106. PubMed ID: 2169914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase.
    de Meis L
    Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrogenic ion transport by Na+,K+-ATPase.
    Pavlov KV; Sokolov VS
    Membr Cell Biol; 2000; 13(6):745-88. PubMed ID: 10963433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the energy transduction mechanism of P-type ATPases with Fe2+-catalyzed oxidative cleavage.
    Karlish SJ
    Ann N Y Acad Sci; 2003 Apr; 986():39-49. PubMed ID: 12763773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of the sodium-potassium adenosinetriphosphatase with adenosine triphosphate and sodium ion that requires subconformations in addition to principal E1 and E2 conformations of the enzyme.
    Ghosh MC; Jencks WP
    Biochemistry; 1996 Sep; 35(38):12587-90. PubMed ID: 8823196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial reactions of the Na,K-ATPase: kinetic analysis and transport properties.
    Apell HJ; Schneeberger A; Sokolov VS
    Acta Physiol Scand Suppl; 1998 Aug; 643():235-45. PubMed ID: 9789566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy.
    von Germar F; Barth A; Mäntele W
    Biophys J; 2000 Mar; 78(3):1531-40. PubMed ID: 10692337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.