BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17696367)

  • 1. Protein release from biodegradable dextran nanogels.
    Van Thienen TG; Raemdonck K; Demeester J; De Smedt SC
    Langmuir; 2007 Sep; 23(19):9794-801. PubMed ID: 17696367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable nanogels prepared by self-assembly of poly(L-lactide)-grafted dextran: entrapment and release of proteins.
    Nagahama K; Ouchi T; Ohya Y
    Macromol Biosci; 2008 Nov; 8(11):1044-52. PubMed ID: 18814318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery.
    Cai H; Yao P
    Nanoscale; 2013 Apr; 5(7):2892-900. PubMed ID: 23447082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the synthesis and characterization of biodegradable dextran nanogels with tunable degradation properties.
    Van Thienen TG; Lucas B; Demeester J; De Smedt SC
    J Control Release; 2006 Nov; 116(2):e12-3. PubMed ID: 17718944
    [No Abstract]   [Full Text] [Related]  

  • 5. PEGylation of biodegradable dextran nanogels for siRNA delivery.
    Naeye B; Raemdonck K; Remaut K; Sproat B; Demeester J; De Smedt SC
    Eur J Pharm Sci; 2010 Jul; 40(4):342-51. PubMed ID: 20435139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysozyme-dextran core-shell nanogels prepared via a green process.
    Li J; Yu S; Yao P; Jiang M
    Langmuir; 2008 Apr; 24(7):3486-92. PubMed ID: 18302424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching.
    Van Tomme SR; De Geest BG; Braeckmans K; De Smedt SC; Siepmann F; Siepmann J; van Nostrum CF; Hennink WE
    J Control Release; 2005 Dec; 110(1):67-78. PubMed ID: 16253375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile way to prepare functionalized dextran nanogels for conjugation of hemoglobin.
    Wei X; Xiong H; He S; Wang Y; Zhou D; Jing X; Huang Y
    Colloids Surf B Biointerfaces; 2017 Jul; 155():440-448. PubMed ID: 28463811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of cationic biodegradable dextran microspheres loaded with BSA and study on the mechanism of protein loading.
    Zheng C; Liu X; Zhu J; Zhao Y
    Drug Dev Ind Pharm; 2012 Jun; 38(6):653-8. PubMed ID: 22468612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels.
    Hiemstra C; Zhong Z; van Steenbergen MJ; Hennink WE; Feijen J
    J Control Release; 2007 Sep; 122(1):71-8. PubMed ID: 17658651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Modified Soy Protein/Dextran Nanogel Induced by Ultrasonication as a Delivery Vehicle for Riboflavin.
    Jin B; Zhou X; Li X; Lin W; Chen G; Qiu R
    Molecules; 2016 Mar; 21(3):282. PubMed ID: 26999081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs.
    Oh JK; Siegwart DJ; Matyjaszewski K
    Biomacromolecules; 2007 Nov; 8(11):3326-31. PubMed ID: 17894465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening poly(ethyleneglycol) micro- and nanogels for drug delivery purposes.
    Van Thienen TG; Demeester J; De Smedt SC
    Int J Pharm; 2008 Mar; 351(1-2):174-85. PubMed ID: 18061378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-exploding lipid-coated microgels.
    De Geest BG; Stubbe BG; Jonas AM; Van Thienen T; Hinrichs WL; Demeester J; De Smedt SC
    Biomacromolecules; 2006 Jan; 7(1):373-9. PubMed ID: 16398538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation of cationic dextran microspheres loaded with tetanus toxoid and study on the mechanism of protein loading].
    Zheng CL; Liu XQ; Zhu JB; Zhao YN
    Yao Xue Xue Bao; 2010 Sep; 45(9):1183-7. PubMed ID: 21351577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of surfactant-free hydroxypropyl methylcellulose nanogels for controlled release of insulin.
    Zhao D; Shi X; Liu T; Lu X; Qiu G; Shea KJ
    Carbohydr Polym; 2016 Oct; 151():1006-1011. PubMed ID: 27474648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoregulation of drug release in azo-dextran nanogels.
    Patnaik S; Sharma AK; Garg BS; Gandhi RP; Gupta KC
    Int J Pharm; 2007 Sep; 342(1-2):184-93. PubMed ID: 17574354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance.
    Zhang L; Xue H; Cao Z; Keefe A; Wang J; Jiang S
    Biomaterials; 2011 Jul; 32(20):4604-8. PubMed ID: 21453965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins.
    Chen W; Zheng M; Meng F; Cheng R; Deng C; Feijen J; Zhong Z
    Biomacromolecules; 2013 Apr; 14(4):1214-22. PubMed ID: 23477570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the release of proteins from degrading crosslinked dextran microspheres using kinetic Monte Carlo simulations.
    Vlugt-Wensink KD; Vlugt TJ; Jiskoot W; Crommelin DJ; Verrijk R; Hennink WE
    J Control Release; 2006 Mar; 111(1-2):117-27. PubMed ID: 16430986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.