BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17696561)

  • 1. One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors.
    Kneipp J; Kneipp H; Wittig B; Kneipp K
    Nano Lett; 2007 Sep; 7(9):2819-23. PubMed ID: 17696561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering studies on immunoassay.
    Xu S; Ji X; Xu W; Zhao B; Dou X; Bai Y; Ozaki Y
    J Biomed Opt; 2005; 10(3):031112. PubMed ID: 16229637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced hyper Raman hyperspectral imaging and probing in animal cells.
    Heiner Z; Gühlke M; Živanović V; Madzharova F; Kneipp J
    Nanoscale; 2017 Jun; 9(23):8024-8032. PubMed ID: 28574069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-patterned SERS substrate: application for protein analysis vs. temperature.
    Das G; Mecarini F; Gentile F; De Angelis F; Mohan Kumar H; Candeloro P; Liberale C; Cuda G; Di Fabrizio E
    Biosens Bioelectron; 2009 Feb; 24(6):1693-9. PubMed ID: 18976899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-optical nanoscale pH meter.
    Bishnoi SW; Rozell CJ; Levin CS; Gheith MK; Johnson BR; Johnson DH; Halas NJ
    Nano Lett; 2006 Aug; 6(8):1687-92. PubMed ID: 16895357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cystic fibrosis monocyte derived macrophages display no defect in acidification of phagolysosomes when measured by optical nanosensors.
    Law SM; Stanfield SJ; Hardisty GR; Dransfield I; Campbell CJ; Gray RD
    J Cyst Fibros; 2020 Mar; 19(2):203-210. PubMed ID: 31501051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures.
    Gühlke M; Heiner Z; Kneipp J
    Phys Chem Chem Phys; 2015 Oct; 17(39):26093-100. PubMed ID: 26377486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells.
    Qu LL; Liu YY; He SH; Chen JQ; Liang Y; Li HT
    Biosens Bioelectron; 2016 Mar; 77():292-8. PubMed ID: 26414026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy.
    Chou IH; Benford M; Beier HT; Coté GL; Wang M; Jing N; Kameoka J; Good TA
    Nano Lett; 2008 Jun; 8(6):1729-35. PubMed ID: 18489171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering.
    Kneipp J; Kneipp H; Kneipp K
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17149-53. PubMed ID: 17088534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-pump coherent anti-Stokes-Raman scattering microscopy.
    Burkacky O; Zumbusch A; Brackmann C; Enejder A
    Opt Lett; 2006 Dec; 31(24):3656-8. PubMed ID: 17130935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and robotization of ultrasensitive plasmonic nanosensors for molecule detection with Raman scattering.
    Xu X; Kim K; Liu C; Fan D
    Sensors (Basel); 2015 May; 15(5):10422-51. PubMed ID: 25946633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel optical nanosensors for probing and imaging live cells.
    Kneipp J; Kneipp H; Wittig B; Kneipp K
    Nanomedicine; 2010 Apr; 6(2):214-26. PubMed ID: 19699322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation Conditions for Surface-Enhanced Hyper Raman Scattering With Biocompatible Gold Nanosubstrates.
    Dusa A; Madzharova F; Kneipp J
    Front Chem; 2021; 9():680905. PubMed ID: 34079791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.
    Chen P; Wang Z; Zong S; Chen H; Zhu D; Zhong Y; Cui Y
    Anal Bioanal Chem; 2014 Oct; 406(25):6337-46. PubMed ID: 25120182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated multiple multi-photon imaging and Raman spectroscopy for characterizing structure-constituent correlation of tissues.
    Jhan JW; Chang WT; Chen HC; Wu MF; Lee YT; Chen CH; Liau I
    Opt Express; 2008 Oct; 16(21):16431-41. PubMed ID: 18852749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary electrical and spectroscopic detection assays with on-wire-lithography-based nanostructures.
    Zheng G; Chen X; Mirkin CA
    Small; 2009 Nov; 5(22):2537-40. PubMed ID: 19697306
    [No Abstract]   [Full Text] [Related]  

  • 19. Differentiation of bacteria cell wall using Raman scattering enhanced by nanoparticle array.
    Liu TY; Chen Y; Wang HH; Huang YL; Chao YC; Tsai KT; Cheng WC; Chuang CY; Tsai YH; Huang CY; Wang DW; Lin CH; Wang JK; Wang YL
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5004-8. PubMed ID: 22905567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in plasmonic sensors.
    Tong L; Wei H; Zhang S; Xu H
    Sensors (Basel); 2014 May; 14(5):7959-73. PubMed ID: 24803189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.