BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17696881)

  • 1. CTCF mediates insulator function at the CFTR locus.
    Blackledge NP; Carter EJ; Evans JR; Lawson V; Rowntree RK; Harris A
    Biochem J; 2007 Dec; 408(2):267-75. PubMed ID: 17696881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple potential intragenic regulatory elements in the CFTR gene.
    Smith DJ; Nuthall HN; Majetti ME; Harris A
    Genomics; 2000 Feb; 64(1):90-6. PubMed ID: 10708521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA polymorphisms in potential regulatory elements of the CFTR gene alter transcription factor binding.
    Rowntree R; Harris A
    Hum Genet; 2002 Jul; 111(1):66-74. PubMed ID: 12136238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insulator element 3' to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells.
    Blackledge NP; Ott CJ; Gillen AE; Harris A
    Nucleic Acids Res; 2009 Mar; 37(4):1086-94. PubMed ID: 19129223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HNF1alpha is involved in tissue-specific regulation of CFTR gene expression.
    Mouchel N; Henstra SA; McCarthy VA; Williams SH; Phylactides M; Harris A
    Biochem J; 2004 Mar; 378(Pt 3):909-18. PubMed ID: 14656222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus.
    Yang R; Kerschner JL; Gosalia N; Neems D; Gorsic LK; Safi A; Crawford GE; Kosak ST; Leir SH; Harris A
    Nucleic Acids Res; 2016 Apr; 44(7):3082-94. PubMed ID: 26673704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a DNase I hypersensitive site located -20.9 kb upstream of the CFTR gene.
    Nuthall HN; Vassaux G; Huxley C; Harris A
    Eur J Biochem; 1999 Dec; 266(2):431-43. PubMed ID: 10561583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus.
    Gosalia N; Neems D; Kerschner JL; Kosak ST; Harris A
    Nucleic Acids Res; 2014 Sep; 42(15):9612-22. PubMed ID: 25081205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway.
    René C; Taulan M; Iral F; Doudement J; L'Honoré A; Gerbon C; Demaille J; Claustres M; Romey MC
    Nucleic Acids Res; 2005; 33(16):5271-90. PubMed ID: 16170155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of DNase-I-hypersensitive sites at the 3' end of the cystic fibrosis transmembrane conductance regulator gene (CFTR).
    Nuthall HN; Moulin DS; Huxley C; Harris A
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):601-11. PubMed ID: 10417323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTCF-dependent chromatin insulator is linked to epigenetic remodeling.
    Ishihara K; Oshimura M; Nakao M
    Mol Cell; 2006 Sep; 23(5):733-42. PubMed ID: 16949368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo analysis of DNase I hypersensitive sites in the human CFTR gene.
    Moulin DS; Manson AL; Nuthall HN; Smith DJ; Huxley C; Harris A
    Mol Med; 1999 Apr; 5(4):211-23. PubMed ID: 10448643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene.
    Phylactides M; Rowntree R; Nuthall H; Ussery D; Wheeler A; Harris A
    Eur J Biochem; 2002 Jan; 269(2):553-9. PubMed ID: 11856314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A boundary for histone acetylation allows distinct expression patterns of the Ad4BP/SF-1 and GCNF loci in adrenal cortex cells.
    Ishihara SL; Morohashi K
    Biochem Biophys Res Commun; 2005 Apr; 329(2):554-62. PubMed ID: 15737622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus.
    Splinter E; Heath H; Kooren J; Palstra RJ; Klous P; Grosveld F; Galjart N; de Laat W
    Genes Dev; 2006 Sep; 20(17):2349-54. PubMed ID: 16951251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CFTR gene and regulation of its expression.
    McCarthy VA; Harris A
    Pediatr Pulmonol; 2005 Jul; 40(1):1-8. PubMed ID: 15806593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin fine structure of the c-MYC insulator element/DNase I-hypersensitive site I is not preserved during mitosis.
    Komura J; Ikehata H; Ono T
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15741-6. PubMed ID: 17890321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An element in intron 1 of the CFTR gene augments intestinal expression in vivo.
    Rowntree RK; Vassaux G; McDowell TL; Howe S; McGuigan A; Phylactides M; Huxley C; Harris A
    Hum Mol Genet; 2001 Jul; 10(14):1455-64. PubMed ID: 11448937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of DNASE I hypersensitive sites in the 120kb 5' to the CFTR gene.
    Smith AN; Wardle CJ; Harris A
    Biochem Biophys Res Commun; 1995 Jun; 211(1):274-81. PubMed ID: 7540005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sheep genome contributes to localization of control elements in a human gene with complex regulatory mechanisms.
    Mouchel N; Tebbutt SJ; Broackes-Carter FC; Sahota V; Summerfield T; Gregory DJ; Harris A
    Genomics; 2001 Aug; 76(1-3):9-13. PubMed ID: 11549312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.