These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17697684)

  • 1. A framework for the functional identification of joint centers using markerless motion capture, validation for the hip joint.
    Corazza S; Mündermann L; Andriacchi T
    J Biomech; 2007; 40(15):3510-5. PubMed ID: 17697684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications.
    Corazza S; Gambaretto E; Mündermann L; Andriacchi TP
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):806-12. PubMed ID: 19272951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.
    Corazza S; Mündermann L; Chaudhari AM; Demattio T; Cobelli C; Andriacchi TP
    Ann Biomed Eng; 2006 Jun; 34(6):1019-29. PubMed ID: 16783657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hip motion analysis using multi phase (virtual and physical) simulation of the patient-specific hip joint dynamics.
    Otake Y; Suzuki N; Hattori A; Miki H; Yamamura M; Yonenobu K; Ochi T; Sugano N
    Stud Health Technol Inform; 2008; 132():339-44. PubMed ID: 18391317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of formal methods in hip joint center assessment: an in vitro analysis.
    Lopomo N; Sun L; Zaffagnini S; Giordano G; Safran MR
    Clin Biomech (Bristol, Avon); 2010 Mar; 25(3):206-12. PubMed ID: 20006913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of the center of the hip joint in computer-assisted surgery: an evaluation study of the Surgetics algorithm.
    Stindel E; Gil D; Briard JL; Merloz P; Dubrana F; Lefevre C
    Comput Aided Surg; 2005 May; 10(3):133-9. PubMed ID: 16321910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory measurement of 3D knee joint angle.
    Favre J; Jolles BM; Aissaoui R; Aminian K
    J Biomech; 2008; 41(5):1029-35. PubMed ID: 18222459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.
    Donati M; Camomilla V; Vannozzi G; Cappozzo A
    J Biomech; 2008 Jul; 41(10):2219-26. PubMed ID: 18550066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized protocol for hip joint centre determination using the functional method.
    Camomilla V; Cereatti A; Vannozzi G; Cappozzo A
    J Biomech; 2006; 39(6):1096-106. PubMed ID: 16549099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of movement for estimating the hip joint centre.
    Begon M; Monnet T; Lacouture P
    Gait Posture; 2007 Mar; 25(3):353-9. PubMed ID: 16733087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posturographic analysis through markerless motion capture without ground reaction forces measurement.
    Corazza S; Andriacchi TP
    J Biomech; 2009 Feb; 42(3):370-4. PubMed ID: 19147143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for estimating joint parameters from motion data.
    Schwartz MH; Rozumalski A
    J Biomech; 2005 Jan; 38(1):107-16. PubMed ID: 15519345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vitro experimental assessment of a new robust algorithm for hip joint centre estimation.
    De Momi E; Lopomo N; Cerveri P; Zaffagnini S; Safran MR; Ferrigno G
    J Biomech; 2009 May; 42(8):989-95. PubMed ID: 19394025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2005 Nov; 38(11):2228-36. PubMed ID: 16154410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of four functional methods to determine centers and axes of rotations.
    MacWilliams BA
    Gait Posture; 2008 Nov; 28(4):673-9. PubMed ID: 18586496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR
    J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the hip motion on the body kinematics in the sagittal plane during human quiet standing.
    Sasagawa S; Ushiyama J; Kouzaki M; Kanehisa H
    Neurosci Lett; 2009 Jan; 450(1):27-31. PubMed ID: 19027828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
    Zelman I; Galun M; Akselrod-Ballin A; Yekutieli Y; Hochner B; Flash T
    J Neurosci Methods; 2009 Aug; 182(1):97-109. PubMed ID: 19505502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.