BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 17697708)

  • 1. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes.
    Popat KC; Eltgroth M; Latempa TJ; Grimes CA; Desai TA
    Biomaterials; 2007 Nov; 28(32):4880-8. PubMed ID: 17697708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.
    Gulati K; Ramakrishnan S; Aw MS; Atkins GJ; Findlay DM; Losic D
    Acta Biomater; 2012 Jan; 8(1):449-56. PubMed ID: 21930254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters.
    Lin WT; Tan HL; Duan ZL; Yue B; Ma R; He G; Tang TT
    Int J Nanomedicine; 2014; 9():1215-30. PubMed ID: 24634583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.
    Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D
    Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
    Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diameter of titanium nanotubes influences anti-bacterial efficacy.
    Ercan B; Taylor E; Alpaslan E; Webster TJ
    Nanotechnology; 2011 Jul; 22(29):295102. PubMed ID: 21673387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions.
    Zhao L; Mei S; Chu PK; Zhang Y; Wu Z
    Biomaterials; 2010 Jul; 31(19):5072-82. PubMed ID: 20362328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.
    Yu WQ; Jiang XQ; Zhang FQ; Xu L
    J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating.
    Fathi M; Akbari B; Taheriazam A
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109743. PubMed ID: 31349530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes.
    Feng W; Geng Z; Li Z; Cui Z; Zhu S; Liang Y; Liu Y; Wang R; Yang X
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():105-12. PubMed ID: 26952403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion.
    Peng Z; Ni J; Zheng K; Shen Y; Wang X; He G; Jin S; Tang T
    Int J Nanomedicine; 2013; 8():3093-105. PubMed ID: 23983463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2.
    Colon G; Ward BC; Webster TJ
    J Biomed Mater Res A; 2006 Sep; 78(3):595-604. PubMed ID: 16752397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections.
    Ma M; Kazemzadeh-Narbat M; Hui Y; Lu S; Ding C; Chen DD; Hancock RE; Wang R
    J Biomed Mater Res A; 2012 Feb; 100(2):278-85. PubMed ID: 22045618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion.
    Zhang F; Zhang Z; Zhu X; Kang ET; Neoh KG
    Biomaterials; 2008 Dec; 29(36):4751-9. PubMed ID: 18829101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast activity on anodized titania nanotubes: effect of simulated body fluid soaking time.
    Bayram C; Demirbilek M; Calişkan N; Demirbilek ME; Denkbaş EB
    J Biomed Nanotechnol; 2012 Jun; 8(3):482-90. PubMed ID: 22764418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform.
    Sirivisoot S; Pareta RA; Webster TJ
    J Biomed Mater Res A; 2011 Dec; 99(4):586-97. PubMed ID: 21953843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes.
    Oh S; Daraio C; Chen LH; Pisanic TR; Fiñones RR; Jin S
    J Biomed Mater Res A; 2006 Jul; 78(1):97-103. PubMed ID: 16602089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.