BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17697885)

  • 1. Analysis of integrin signaling by fluorescence resonance energy transfer.
    Wang Y; Chien S
    Methods Enzymol; 2007; 426():177-201. PubMed ID: 17697885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing protein kinase dynamics in living cells with FRET reporters.
    Ni Q; Titov DV; Zhang J
    Methods; 2006 Nov; 40(3):279-86. PubMed ID: 16908183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chapter 2: Molecular sensors based on fluorescence resonance energy transfer to visualize cellular dynamics.
    Ananthanarayanan B; Ni Q; Zhang J
    Methods Cell Biol; 2008; 89():37-57. PubMed ID: 19118671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-based biosensors for protein kinases: illuminating the kinome.
    Zhang J; Allen MD
    Mol Biosyst; 2007 Nov; 3(11):759-65. PubMed ID: 17940658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 21: Quantitative fluorescence lifetime imaging in cells as a tool to design computational models of ran-regulated reaction networks.
    Kalab P; Pralle A
    Methods Cell Biol; 2008; 89():541-68. PubMed ID: 19118690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research.
    Schmid JA; Birbach A
    Thromb Haemost; 2007 Mar; 97(3):378-84. PubMed ID: 17334504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy.
    Yasuda R
    Curr Opin Neurobiol; 2006 Oct; 16(5):551-61. PubMed ID: 16971112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay.
    Shyu YJ; Suarez CD; Hu CD
    Nat Protoc; 2008; 3(11):1693-702. PubMed ID: 18846096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Teaching resources. Imaging signal transduction in living cells with fluorescent proteins.
    Philips MR
    Sci STKE; 2005 Dec; 2005(314):tr28. PubMed ID: 16352803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy.
    Fazekas Z; Petrás M; Fábián A; Pályi-Krekk Z; Nagy P; Damjanovich S; Vereb G; Szöllosi J
    Cytometry A; 2008 Mar; 73(3):209-19. PubMed ID: 18044751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the spatiotemporal activation of rho GTPases using Raichu probes.
    Nakamura T; Kurokawa K; Kiyokawa E; Matsuda M
    Methods Enzymol; 2006; 406():315-32. PubMed ID: 16472667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/mKOκ-based biosensor and a single fluorescent protein biosensor.
    Su T; Zhang Z; Luo Q
    Biosens Bioelectron; 2012 Jan; 31(1):292-8. PubMed ID: 22088261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space.
    Pham E; Chiang J; Li I; Shum W; Truong K
    Structure; 2007 May; 15(5):515-23. PubMed ID: 17502097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes.
    Nakamura T; Aoki K; Matsuda M
    Methods; 2005 Oct; 37(2):146-53. PubMed ID: 16288890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence resonance energy transfer-based assays for the real-time detection of nitric oxide signaling.
    St Croix CM; Stitt MS; Watkins SC; Pitt BR
    Methods Enzymol; 2005; 396():317-26. PubMed ID: 16291241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cellular FRET-based sensor for beta-O-GlcNAc, a dynamic carbohydrate modification involved in signaling.
    Carrillo LD; Krishnamoorthy L; Mahal LK
    J Am Chem Soc; 2006 Nov; 128(46):14768-9. PubMed ID: 17105262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations.
    Sapsford KE; Berti L; Medintz IL
    Angew Chem Int Ed Engl; 2006 Jul; 45(28):4562-89. PubMed ID: 16819760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Langmuir; 2009 Jan; 25(1):633-8. PubMed ID: 19115878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.