These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 17697996)
21. The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Cabezón E; Montgomery MG; Leslie AG; Walker JE Nat Struct Biol; 2003 Sep; 10(9):744-50. PubMed ID: 12923572 [TBL] [Abstract][Full Text] [Related]
22. Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. Yagi H; Kajiwara N; Tanaka H; Tsukihara T; Kato-Yamada Y; Yoshida M; Akutsu H Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11233-8. PubMed ID: 17581881 [TBL] [Abstract][Full Text] [Related]
23. Direct observation of the rotation of F1-ATPase. Noji H; Yasuda R; Yoshida M; Kinosita K Nature; 1997 Mar; 386(6622):299-302. PubMed ID: 9069291 [TBL] [Abstract][Full Text] [Related]
24. Mitochondrial ATP synthase residue betaarginine-408, which interacts with the inhibitory site of regulatory protein IF1, is essential for the function of the enzyme. Ichikawa N; Chisuwa N; Tanase M; Nakamura M J Biochem; 2005 Aug; 138(2):201-7. PubMed ID: 16091595 [TBL] [Abstract][Full Text] [Related]
25. Inverse regulation of F1-ATPase activity by a mutation at the regulatory region on the gamma subunit of chloroplast ATP synthase. Konno H; Yodogawa M; Stumpp MT; Kroth P; Strotmann H; Motohashi K; Amano T; Hisabori T Biochem J; 2000 Dec; 352 Pt 3(Pt 3):783-8. PubMed ID: 11104686 [TBL] [Abstract][Full Text] [Related]
26. Structural characterization of the interaction of the delta and alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy. Wilkens S; Borchardt D; Weber J; Senior AE Biochemistry; 2005 Sep; 44(35):11786-94. PubMed ID: 16128580 [TBL] [Abstract][Full Text] [Related]
27. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum. Ferguson SA; Cook GM; Montgomery MG; Leslie AG; Walker JE Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10860-5. PubMed ID: 27621435 [TBL] [Abstract][Full Text] [Related]
28. The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase. Nesci S; Trombetti F; Ventrella V; Pagliarani A Med Hypotheses; 2015 Jan; 84(1):53-7. PubMed ID: 25497387 [TBL] [Abstract][Full Text] [Related]
29. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor. La T; Clark-Walker GD; Wang X; Wilkens S; Chen XJ Eukaryot Cell; 2013 Nov; 12(11):1451-61. PubMed ID: 24014764 [TBL] [Abstract][Full Text] [Related]
30. Mutations within the C-terminus of the gamma subunit of the photosynthetic F1-ATPase activate MgATP hydrolysis and attenuate the stimulatory oxyanion effect. He F; Samra HS; Tucker WC; Mayans DR; Hoang E; Gromet-Elhanan Z; Berrie CL; Richter ML Biochemistry; 2007 Mar; 46(9):2411-8. PubMed ID: 17288458 [TBL] [Abstract][Full Text] [Related]
31. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation. Feniouk BA; Junge W FEBS Lett; 2005 Sep; 579(23):5114-8. PubMed ID: 16154570 [TBL] [Abstract][Full Text] [Related]
32. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Gao YQ; Yang W; Karplus M Cell; 2005 Oct; 123(2):195-205. PubMed ID: 16239139 [TBL] [Abstract][Full Text] [Related]
33. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340 [TBL] [Abstract][Full Text] [Related]
34. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase. Lowry DS; Frasch WD Biochemistry; 2005 May; 44(19):7275-81. PubMed ID: 15882066 [TBL] [Abstract][Full Text] [Related]
35. Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase. Konno H; Suzuki T; Bald D; Yoshida M; Hisabori T Biochem Biophys Res Commun; 2004 May; 318(1):17-24. PubMed ID: 15110747 [TBL] [Abstract][Full Text] [Related]
37. Functional conformation changes in the TF(1)-ATPase beta subunit probed by 12 tyrosine residues. Yagi H; Tozawa K; Sekino N; Iwabuchi T; Yoshida M; Akutsu H Biophys J; 1999 Oct; 77(4):2175-83. PubMed ID: 10512836 [TBL] [Abstract][Full Text] [Related]
38. Axle-less F1-ATPase rotates in the correct direction. Furuike S; Hossain MD; Maki Y; Adachi K; Suzuki T; Kohori A; Itoh H; Yoshida M; Kinosita K Science; 2008 Feb; 319(5865):955-8. PubMed ID: 18276891 [TBL] [Abstract][Full Text] [Related]
39. Insights into the regulatory function of the Krah A; Zarco-Zavala M; McMillan DGG Open Biol; 2018 May; 8(5):. PubMed ID: 29769322 [TBL] [Abstract][Full Text] [Related]
40. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Meier T; Morgner N; Matthies D; Pogoryelov D; Keis S; Cook GM; Dimroth P; Brutschy B Mol Microbiol; 2007 Sep; 65(5):1181-92. PubMed ID: 17645441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]