These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17697998)

  • 1. NikD, an unusual amino acid oxidase essential for nikkomycin biosynthesis: structures of closed and open forms at 1.15 and 1.90 A resolution.
    Carrell CJ; Bruckner RC; Venci D; Zhao G; Jorns MS; Mathews FS
    Structure; 2007 Aug; 15(8):928-41. PubMed ID: 17697998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mobile tryptophan is the intrinsic charge transfer donor in a flavoenzyme essential for nikkomycin antibiotic biosynthesis.
    Bruckner RC; Zhao G; Ferreira P; Jorns MS
    Biochemistry; 2007 Jan; 46(3):819-27. PubMed ID: 17223703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of NikD, a new flavoenzyme important in the biosynthesis of nikkomycin antibiotics.
    Venci D; Zhao G; Jorns MS
    Biochemistry; 2002 Dec; 41(52):15795-802. PubMed ID: 12501208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nikkomycin biosynthesis: formation of a 4-electron oxidation product during turnover of NikD with its physiological substrate.
    Bruckner RC; Zhao G; Venci D; Jorns MS
    Biochemistry; 2004 Jul; 43(28):9160-7. PubMed ID: 15248773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the role of active site residues in NikD, an unusual amino acid oxidase that catalyzes an aromatization reaction important in nikkomycin biosynthesis.
    Kommoju PR; Bruckner RC; Ferreira P; Jorns MS
    Biochemistry; 2009 Jul; 48(29):6951-62. PubMed ID: 19530706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors that affect oxygen activation and coupling of the two redox cycles in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase.
    Kommoju PR; Bruckner RC; Ferreira P; Carrell CJ; Mathews FS; Jorns MS
    Biochemistry; 2009 Oct; 48(40):9542-55. PubMed ID: 19702312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formate oxidase, an enzyme of the glucose-methanol-choline oxidoreductase family, has a His-Arg pair and 8-formyl-FAD at the catalytic site.
    Doubayashi D; Ootake T; Maeda Y; Oki M; Tokunaga Y; Sakurai A; Nagaosa Y; Mikami B; Uchida H
    Biosci Biotechnol Biochem; 2011; 75(9):1662-7. PubMed ID: 21897046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism-based inhibitors of cytokinin oxidase/dehydrogenase attack FAD cofactor.
    Kopecný D; Sebela M; Briozzo P; Spíchal L; Houba-Hérin N; Masek V; Joly N; Madzak C; Anzenbacher P; Laloue M
    J Mol Biol; 2008 Jul; 380(5):886-99. PubMed ID: 18571199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase, an essential enzyme in the biosynthesis of archaeal membrane lipids.
    Xu Q; Eguchi T; Mathews II; Rife CL; Chiu HJ; Farr CL; Feuerhelm J; Jaroszewski L; Klock HE; Knuth MW; Miller MD; Weekes D; Elsliger MA; Deacon AM; Godzik A; Lesley SA; Wilson IA
    J Mol Biol; 2010 Dec; 404(3):403-17. PubMed ID: 20869368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: implications for flavoenzyme catalysis.
    Malito E; Coda A; Bilyeu KD; Fraaije MW; Mattevi A
    J Mol Biol; 2004 Aug; 341(5):1237-49. PubMed ID: 15321719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M; Tamada T; Takeda K; Matsumoto F; Ohno H; Kosugi M; Takaba K; Shoyama Y; Kimura S; Kuroki R; Miki K
    J Mol Biol; 2013 Nov; 425(22):4295-306. PubMed ID: 23831226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate Channel Flexibility in Pseudomonas aeruginosa MurB Accommodates Two Distinct Substrates.
    Chen MW; Lohkamp B; Schnell R; Lescar J; Schneider G
    PLoS One; 2013; 8(6):e66936. PubMed ID: 23805286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism.
    Rohman A; van Oosterwijk N; Thunnissen AM; Dijkstra BW
    J Biol Chem; 2013 Dec; 288(49):35559-68. PubMed ID: 24165124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.
    Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G
    Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral and kinetic characterization of intermediates in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase.
    Bruckner RC; Jorns MS
    Biochemistry; 2009 Jun; 48(21):4455-65. PubMed ID: 19354202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain.
    Welland A; Garnaud PE; Kitamura M; Miles CS; Daff S
    Biochemistry; 2008 Sep; 47(37):9771-80. PubMed ID: 18717591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase.
    Lim L; Molla G; Guinn N; Ghisla S; Pollegioni L; Vrielink A
    Biochem J; 2006 Nov; 400(1):13-22. PubMed ID: 16856877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.