These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 17698026)
21. Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding. Bennett B; Holz RC Biochemistry; 1997 Aug; 36(32):9837-46. PubMed ID: 9245416 [TBL] [Abstract][Full Text] [Related]
22. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Horton NC; Perona JJ Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321 [TBL] [Abstract][Full Text] [Related]
23. TOMOCOMD-CARDD descriptors-based virtual screening of tyrosinase inhibitors: evaluation of different classification model combinations using bond-based linear indices. Casañola-Martín GM; Marrero-Ponce Y; Khan MT; Ather A; Sultan S; Torrens F; Rotondo R Bioorg Med Chem; 2007 Feb; 15(3):1483-503. PubMed ID: 17110117 [TBL] [Abstract][Full Text] [Related]
24. The first crystal structure of tyrosinase: all questions answered? Decker H; Schweikardt T; Tuczek F Angew Chem Int Ed Engl; 2006 Jul; 45(28):4546-50. PubMed ID: 16795103 [No Abstract] [Full Text] [Related]
25. The nickel site of Bacillus pasteurii UreE, a urease metallo-chaperone, as revealed by metal-binding studies and X-ray absorption spectroscopy. Stola M; Musiani F; Mangani S; Turano P; Safarov N; Zambelli B; Ciurli S Biochemistry; 2006 May; 45(20):6495-509. PubMed ID: 16700560 [TBL] [Abstract][Full Text] [Related]
26. Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Decker H; Schweikardt T; Nillius D; Salzbrunn U; Jaenicke E; Tuczek F Gene; 2007 Aug; 398(1-2):183-91. PubMed ID: 17566671 [TBL] [Abstract][Full Text] [Related]
27. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis. Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969 [TBL] [Abstract][Full Text] [Related]
28. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance. Eletsky A; Kienhöfer A; Hilvert D; Pervushin K Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424 [TBL] [Abstract][Full Text] [Related]
29. Roles of copper ligands in the activation and secretion of Streptomyces tyrosinase. Tsai TY; Lee YH J Biol Chem; 1998 Jul; 273(30):19243-50. PubMed ID: 9668113 [TBL] [Abstract][Full Text] [Related]
30. Structure of phenoxazinone synthase from Streptomyces antibioticus reveals a new type 2 copper center. Smith AW; Camara-Artigas A; Wang M; Allen JP; Francisco WA Biochemistry; 2006 Apr; 45(14):4378-87. PubMed ID: 16584173 [TBL] [Abstract][Full Text] [Related]
31. The 2.0 A structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor. Shi W; Li CM; Tyler PC; Furneaux RH; Cahill SM; Girvin ME; Grubmeyer C; Schramm VL; Almo SC Biochemistry; 1999 Aug; 38(31):9872-80. PubMed ID: 10433693 [TBL] [Abstract][Full Text] [Related]
32. Effect of hesperetin on tyrosinase: inhibition kinetics integrated computational simulation study. Si YX; Wang ZJ; Park D; Chung HY; Wang SF; Yan L; Yang JM; Qian GY; Yin SJ; Park YD Int J Biol Macromol; 2012 Jan; 50(1):257-62. PubMed ID: 22093614 [TBL] [Abstract][Full Text] [Related]
33. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
34. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition. Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764 [TBL] [Abstract][Full Text] [Related]
35. Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase. Jackson TA; Yikilmaz E; Miller AF; Brunold TC J Am Chem Soc; 2003 Jul; 125(27):8348-63. PubMed ID: 12837107 [TBL] [Abstract][Full Text] [Related]
36. The structural role of the copper-coordinating and surface-exposed histidine residue in the blue copper protein azurin. Jeuken LJ; Ubbink M; Bitter JH; van Vliet P; Meyer-Klaucke W; Canters GW J Mol Biol; 2000 Jun; 299(3):737-55. PubMed ID: 10835281 [TBL] [Abstract][Full Text] [Related]
37. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386 [TBL] [Abstract][Full Text] [Related]
38. Tyrosinase kinetics: a semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates. Riley PA J Theor Biol; 2000 Mar; 203(1):1-12. PubMed ID: 10677273 [TBL] [Abstract][Full Text] [Related]
39. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Usher KC; Blaszczak LC; Weston GS; Shoichet BK; Remington SJ Biochemistry; 1998 Nov; 37(46):16082-92. PubMed ID: 9819201 [TBL] [Abstract][Full Text] [Related]
40. Probing kojic acid binding to tyrosinase enzyme: insights from a model complex and QM/MM calculations. Bochot C; Gouron A; Bubacco L; Milet A; Philouze C; Réglier M; Serratrice G; Jamet H; Belle C Chem Commun (Camb); 2014 Jan; 50(3):308-10. PubMed ID: 24225561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]