BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17698512)

  • 1. Proteomic analysis of rat striatal synaptosomes during acrylamide intoxication at a low dose rate.
    Barber DS; Stevens S; LoPachin RM
    Toxicol Sci; 2007 Nov; 100(1):156-67. PubMed ID: 17698512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of acrylamide-protein adduct formation in rat brain synaptosomes.
    Barber DS; LoPachin RM
    Toxicol Appl Pharmacol; 2004 Dec; 201(2):120-36. PubMed ID: 15541752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles.
    LoPachin RM; Barber DS; He D; Das S
    Toxicol Sci; 2006 Jan; 89(1):224-34. PubMed ID: 16207938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotoxic mechanisms of electrophilic type-2 alkenes: soft soft interactions described by quantum mechanical parameters.
    LoPachin RM; Gavin T; Geohagen BC; Das S
    Toxicol Sci; 2007 Aug; 98(2):561-70. PubMed ID: 17519395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro effects of acrylamide on synaptosomal neurotransmitter uptake and release.
    LoPachin RM; Schwarcz AI; Gaughan CL; Mansukhani S; Das S
    Neurotoxicology; 2004 Mar; 25(3):349-63. PubMed ID: 15019298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the Nrf2-ARE pathway in acrylamide neurotoxicity.
    Zhang L; Gavin T; Barber DS; LoPachin RM
    Toxicol Lett; 2011 Aug; 205(1):1-7. PubMed ID: 21540084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity.
    Lopachin RM; Barber DS; Geohagen BC; Gavin T; He D; Das S
    Toxicol Sci; 2007 Jan; 95(1):136-46. PubMed ID: 17023561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein targets of acrylamide adduct formation in cultured rat dopaminergic cells.
    Martyniuk CJ; Feswick A; Fang B; Koomen JM; Barber DS; Gavin T; Lopachin RM
    Toxicol Lett; 2013 Jun; 219(3):279-87. PubMed ID: 23566896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord.
    Lehning EJ; Balaban CD; Ross JF; LoPachi RM
    Neurotoxicology; 2002 Sep; 23(3):415-29. PubMed ID: 12387367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptosomal toxicity and nucleophilic targets of 4-hydroxy-2-nonenal.
    Lopachin RM; Geohagen BC; Gavin T
    Toxicol Sci; 2009 Jan; 107(1):171-81. PubMed ID: 18996889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry.
    LoPachin RM; Gavin T
    Environ Health Perspect; 2012 Dec; 120(12):1650-7. PubMed ID: 23060388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system.
    Pan X; Guo X; Xiong F; Cheng G; Lu Q; Yan H
    Toxicol Lett; 2015 Jul; 236(1):60-8. PubMed ID: 25943760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry.
    Schrimpf SP; Meskenaite V; Brunner E; Rutishauser D; Walther P; Eng J; Aebersold R; Sonderegger P
    Proteomics; 2005 Jul; 5(10):2531-41. PubMed ID: 15984043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Isotope-Coded Affinity Tag Method for Quantitative Protein Profile Comparison and Relative Quantitation of Cysteine Redox Modifications.
    Chan JCY; Zhou L; Chan ECY
    Curr Protoc Protein Sci; 2015 Nov; 82():23.2.1-23.2.19. PubMed ID: 26521713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord.
    Lehning EJ; Balaban CD; Ross JF; LoPachin RM
    Neurotoxicology; 2003 Jan; 24(1):109-23. PubMed ID: 12564387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylamide neuropathy. III. Spatiotemporal characteristics of nerve cell damage in forebrain.
    Lehning EJ; Balaban CD; Ross JF; LoPachin RM
    Neurotoxicology; 2003 Jan; 24(1):125-36. PubMed ID: 12564388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach.
    Chiang MC; Juo CG; Chang HH; Chen HM; Yi EC; Chern Y
    Mol Cell Proteomics; 2007 May; 6(5):781-97. PubMed ID: 17272267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic potential of N-acetylcysteine in acrylamide acute neurotoxicity in adult zebrafish.
    Faria M; Prats E; Gómez-Canela C; Hsu CY; Arick MA; Bedrossiantz J; Orozco M; Garcia-Reyero N; Ziv T; Ben-Lulu S; Admon A; Gómez-Oliván LM; Raldúa D
    Sci Rep; 2019 Nov; 9(1):16467. PubMed ID: 31712630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrylamide acute neurotoxicity in adult zebrafish.
    Faria M; Ziv T; Gómez-Canela C; Ben-Lulu S; Prats E; Novoa-Luna KA; Admon A; Piña B; Tauler R; Gómez-Oliván LM; Raldúa D
    Sci Rep; 2018 May; 8(1):7918. PubMed ID: 29784925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective role of Panax ginseng extract standardized with ginsenoside Rg3 against acrylamide-induced neurotoxicity in rats.
    Mannaa F; Abdel-Wahhab MA; Ahmed HH; Park MH
    J Appl Toxicol; 2006; 26(3):198-206. PubMed ID: 16389659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.