These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 17698585)
1. Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains. Gazdoiu S; Yamoah K; Wu K; Pan ZQ Mol Cell Biol; 2007 Oct; 27(20):7041-52. PubMed ID: 17698585 [TBL] [Abstract][Full Text] [Related]
2. Proximity-induced activation of human Cdc34 through heterologous dimerization. Gazdoiu S; Yamoah K; Wu K; Escalante CR; Tappin I; Bermudez V; Aggarwal AK; Hurwitz J; Pan ZQ Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15053-8. PubMed ID: 16210246 [TBL] [Abstract][Full Text] [Related]
3. Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34. Sadowski M; Suryadinata R; Lai X; Heierhorst J; Sarcevic B Mol Cell Biol; 2010 May; 30(10):2316-29. PubMed ID: 20194622 [TBL] [Abstract][Full Text] [Related]
4. Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin. Spratt DE; Shaw GS J Mol Biol; 2011 Apr; 407(3):425-38. PubMed ID: 21296085 [TBL] [Abstract][Full Text] [Related]
5. Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Wu K; Kovacev J; Pan ZQ Mol Cell; 2010 Mar; 37(6):784-96. PubMed ID: 20347421 [TBL] [Abstract][Full Text] [Related]
6. Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination. Chong RA; Wu K; Spratt DE; Yang Y; Lee C; Nayak J; Xu M; Elkholi R; Tappin I; Li J; Hurwitz J; Brown BD; Chipuk JE; Chen ZJ; Sanchez R; Shaw GS; Huang L; Pan ZQ Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8434-9. PubMed ID: 24912152 [TBL] [Abstract][Full Text] [Related]
7. The human Cdc34 carboxyl terminus contains a non-covalent ubiquitin binding activity that contributes to SCF-dependent ubiquitination. Choi YS; Wu K; Jeong K; Lee D; Jeon YH; Choi BS; Pan ZQ; Ryu KS; Cheong C J Biol Chem; 2010 Jun; 285(23):17754-62. PubMed ID: 20353940 [TBL] [Abstract][Full Text] [Related]
8. The SCF(HOS/beta-TRCP)-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation. Wu K; Fuchs SY; Chen A; Tan P; Gomez C; Ronai Z; Pan ZQ Mol Cell Biol; 2000 Feb; 20(4):1382-93. PubMed ID: 10648623 [TBL] [Abstract][Full Text] [Related]
9. A snapshot of ubiquitin chain elongation: lysine 48-tetra-ubiquitin slows down ubiquitination. Kovacev J; Wu K; Spratt DE; Chong RA; Lee C; Nayak J; Shaw GS; Pan ZQ J Biol Chem; 2014 Mar; 289(10):7068-7081. PubMed ID: 24464578 [TBL] [Abstract][Full Text] [Related]
10. Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system. Ryu KS; Choi YS; Ko J; Kim SO; Kim HJ; Cheong HK; Jeon YH; Choi BS; Cheong C BMB Rep; 2008 Dec; 41(12):852-7. PubMed ID: 19123975 [TBL] [Abstract][Full Text] [Related]
11. Release of ubiquitin-charged Cdc34-S - Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Deffenbaugh AE; Scaglione KM; Zhang L; Moore JM; Buranda T; Sklar LA; Skowyra D Cell; 2003 Sep; 114(5):611-22. PubMed ID: 13678584 [TBL] [Abstract][Full Text] [Related]
12. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34. Suryadinata R; Holien JK; Yang G; Parker MW; Papaleo E; Šarčević B Cell Cycle; 2013 Jun; 12(11):1732-44. PubMed ID: 23656784 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Petroski MD; Deshaies RJ Cell; 2005 Dec; 123(6):1107-20. PubMed ID: 16360039 [TBL] [Abstract][Full Text] [Related]
14. The acidic tail of the Cdc34 ubiquitin-conjugating enzyme functions in both binding to and catalysis with ubiquitin ligase SCFCdc4. Kleiger G; Hao B; Mohl DA; Deshaies RJ J Biol Chem; 2009 Dec; 284(52):36012-36023. PubMed ID: 19875449 [TBL] [Abstract][Full Text] [Related]
15. Sequential E2s drive polyubiquitin chain assembly on APC targets. Rodrigo-Brenni MC; Morgan DO Cell; 2007 Jul; 130(1):127-39. PubMed ID: 17632060 [TBL] [Abstract][Full Text] [Related]
16. Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations. Sandoval D; Hill S; Ziemba A; Lewis S; Kuhlman B; Kleiger G J Biol Chem; 2015 Jan; 290(2):1106-18. PubMed ID: 25425648 [TBL] [Abstract][Full Text] [Related]
18. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Li W; Tu D; Brunger AT; Ye Y Nature; 2007 Mar; 446(7133):333-7. PubMed ID: 17310145 [TBL] [Abstract][Full Text] [Related]
19. The Nedd8-conjugated ROC1-CUL1 core ubiquitin ligase utilizes Nedd8 charged surface residues for efficient polyubiquitin chain assembly catalyzed by Cdc34. Wu K; Chen A; Tan P; Pan ZQ J Biol Chem; 2002 Jan; 277(1):516-27. PubMed ID: 11675391 [TBL] [Abstract][Full Text] [Related]
20. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. Kim HT; Kim KP; Lledias F; Kisselev AF; Scaglione KM; Skowyra D; Gygi SP; Goldberg AL J Biol Chem; 2007 Jun; 282(24):17375-86. PubMed ID: 17426036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]