BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17698962)

  • 1. Nucleosome hopping and sliding kinetics determined from dynamics of single chromatin fibers in Xenopus egg extracts.
    Ranjith P; Yan J; Marko JF
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13649-54. PubMed ID: 17698962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATP-dependent chromatin assembly dynamics.
    Yan J; Maresca TJ; Skoko D; Adams CD; Xiao B; Christensen MO; Heald R; Marko JF
    Mol Biol Cell; 2007 Feb; 18(2):464-74. PubMed ID: 17108322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers.
    Bennink ML; Leuba SH; Leno GH; Zlatanova J; de Grooth BG; Greve J
    Nat Struct Biol; 2001 Jul; 8(7):606-10. PubMed ID: 11427891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin under mechanical stress: from single 30 nm fibers to single nucleosomes.
    Bednar J; Dimitrov S
    FEBS J; 2011 Jul; 278(13):2231-43. PubMed ID: 21535477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of nucleosome positions by DNA sequence and remodeling machines.
    Schnitzler GR
    Cell Biochem Biophys; 2008; 51(2-3):67-80. PubMed ID: 18543113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome positioning and nucleosome stacking: two faces of the same coin.
    Riposo J; Mozziconacci J
    Mol Biosyst; 2012 Apr; 8(4):1172-8. PubMed ID: 22266567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning.
    Krietenstein N; Wippo CJ; Lieleg C; Korber P
    Methods Enzymol; 2012; 513():205-32. PubMed ID: 22929771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing.
    Blank TA; Becker PB
    J Mol Biol; 1996 Jul; 260(1):1-8. PubMed ID: 8676389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-dependent nucleosome positioning.
    Chung HR; Vingron M
    J Mol Biol; 2009 Mar; 386(5):1411-22. PubMed ID: 19070622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism.
    Aoyagi S; Wade PA; Hayes JJ
    J Biol Chem; 2003 Aug; 278(33):30562-8. PubMed ID: 12767978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome positioning in relation to nucleosome spacing and DNA sequence-specific binding of a protein.
    Pusarla RH; Vinayachandran V; Bhargava P
    FEBS J; 2007 May; 274(9):2396-410. PubMed ID: 17419736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-base resolution nucleosome mapping on DNA sequences.
    Gabdank I; Barash D; Trifonov EN
    J Biomol Struct Dyn; 2010 Aug; 28(1):107-22. PubMed ID: 20476799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitotic chromosome assembly despite nucleosome depletion in
    Shintomi K; Inoue F; Watanabe H; Ohsumi K; Ohsugi M; Hirano T
    Science; 2017 Jun; 356(6344):1284-1287. PubMed ID: 28522692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin dynamics: nucleosomes go mobile through twist defects.
    Kulić IM; Schiessel H
    Phys Rev Lett; 2003 Oct; 91(14):148103. PubMed ID: 14611559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chromatin accessibility complex: chromatin dynamics through nucleosome sliding.
    Becker PB
    Cold Spring Harb Symp Quant Biol; 2004; 69():281-7. PubMed ID: 16117660
    [No Abstract]   [Full Text] [Related]  

  • 16. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin.
    Nightingale K; Dimitrov S; Reeves R; Wolffe AP
    EMBO J; 1996 Feb; 15(3):548-61. PubMed ID: 8599938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing.
    Yang JG; Madrid TS; Sevastopoulos E; Narlikar GJ
    Nat Struct Mol Biol; 2006 Dec; 13(12):1078-83. PubMed ID: 17099699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches.
    De Santis P; Morosetti S; Scipioni A
    J Biomol Struct Dyn; 2010 Jun; 27(6):747-64. PubMed ID: 20232931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antipolar and Anticlinic Mesophase Order in Chromatin Induced by Nucleosome Polarity and Chirality Correlations.
    Garcés R; Podgornik R; Lorman V
    Phys Rev Lett; 2015 Jun; 114(23):238102. PubMed ID: 26196832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.