These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17698962)

  • 21. AFM imaging and theoretical modeling studies of sequence-dependent nucleosome positioning.
    Pisano S; Pascucci E; Cacchione S; De Santis P; Savino M
    Biophys Chem; 2006 Nov; 124(2):81-9. PubMed ID: 16824667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations.
    Brandani GB; Niina T; Tan C; Takada S
    Nucleic Acids Res; 2018 Apr; 46(6):2788-2801. PubMed ID: 29506273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo.
    Fraser RM; Allan J; Simmen MW
    J Mol Biol; 2006 Dec; 364(4):582-98. PubMed ID: 17027853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers.
    Meng H; Andresen K; van Noort J
    Nucleic Acids Res; 2015 Apr; 43(7):3578-90. PubMed ID: 25779043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy.
    Suzuki Y; Higuchi Y; Hizume K; Yokokawa M; Yoshimura SH; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2010 May; 110(6):682-8. PubMed ID: 20236766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling of replisome movement with nucleosome dynamics can contribute to the parent-daughter information transfer.
    Bameta T; Das D; Padinhateeri R
    Nucleic Acids Res; 2018 Jun; 46(10):4991-5000. PubMed ID: 29850895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells.
    Shinkai S; Nozaki T; Maeshima K; Togashi Y
    PLoS Comput Biol; 2016 Oct; 12(10):e1005136. PubMed ID: 27764097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy.
    Miyagi A; Ando T; Lyubchenko YL
    Biochemistry; 2011 Sep; 50(37):7901-8. PubMed ID: 21846149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome and chromatin fiber dynamics.
    Luger K; Hansen JC
    Curr Opin Struct Biol; 2005 Apr; 15(2):188-96. PubMed ID: 15837178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review fifteen years of search for strong nucleosomes.
    Trifonov EN; Nibhani R
    Biopolymers; 2015 Aug; 103(8):432-7. PubMed ID: 25546738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rules and regulation in the primary structure of chromatin.
    Rando OJ; Ahmad K
    Curr Opin Cell Biol; 2007 Jun; 19(3):250-6. PubMed ID: 17466507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fokker-Planck description of single nucleosome repositioning by dimeric chromatin remodelers.
    Vandecan Y; Blossey R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012728. PubMed ID: 23944511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations.
    Kepper N; Ettig R; Stehr R; Marnach S; Wedemann G; Rippe K
    Biopolymers; 2011 Jul; 95(7):435-47. PubMed ID: 21294108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping assembly favored and remodeled nucleosome positions on polynucleosomal templates.
    Sims HI; Pham CD; Schnitzler GR
    Methods Mol Biol; 2012; 833():311-36. PubMed ID: 22183602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleosome arrays reveal the two-start organization of the chromatin fiber.
    Dorigo B; Schalch T; Kulangara A; Duda S; Schroeder RR; Richmond TJ
    Science; 2004 Nov; 306(5701):1571-3. PubMed ID: 15567867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translational positioning of nucleosomes on DNA: the role of sequence-dependent isotropic DNA bending stiffness.
    Sivolob AV; Khrapunov SN
    J Mol Biol; 1995 Apr; 247(5):918-31. PubMed ID: 7723041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants.
    Ramaswamy A; Bahar I; Ioshikhes I
    Proteins; 2005 Feb; 58(3):683-96. PubMed ID: 15624215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE; Thoma F
    EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy.
    Ladoux B; Quivy JP; Doyle P; du Roure O; Almouzni G; Viovy JL
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14251-6. PubMed ID: 11114182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.