These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1769916)

  • 1. The potassium concentration in the cochlear fluids of the embryonic and post-hatching chick.
    Runhaar G; Schedler J; Manley GA
    Hear Res; 1991 Nov; 56(1-2):227-38. PubMed ID: 1769916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of anoxia-induced K+ concentration changes in the cochlea measured with K+ specific microelectrodes.
    Melichar I; Syka J
    Pflugers Arch; 1977; 372(3):207-13. PubMed ID: 564043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CO2/HCO3- in perilymph on the endocochlear potential in guinea pigs.
    Nimura Y; Mori Y; Inui T; Sohma Y; Takenaka H; Kubota T
    J Physiol Sci; 2007 Feb; 57(1):15-22. PubMed ID: 17169167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartment analysis of the potassium fluxes in the cochlea.
    Schön F; Jung W
    Arch Otorhinolaryngol; 1983; 237(2):125-31. PubMed ID: 6303283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential.
    Yoshida T; Nin F; Murakami S; Ogata G; Uetsuka S; Choi S; Nakagawa T; Inohara H; Komune S; Kurachi Y; Hibino H
    Pflugers Arch; 2016 Sep; 468(9):1609-19. PubMed ID: 27344659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier.
    Hirt B; Penkova ZH; Eckhard A; Liu W; Rask-Andersen H; Müller M; Löwenheim H
    Neuroscience; 2010 Jul; 168(4):957-70. PubMed ID: 19747527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exposure to noise on ion movement in guinea pig cochlea.
    Konishi T; Salt AN; Hamrick PE
    Hear Res; 1979 Dec; 1(4):325-42. PubMed ID: 541280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea.
    Schmiedt RA
    Hear Res; 1996 Dec; 102(1-2):125-32. PubMed ID: 8951457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural and electrophysiological maturation of the chick tegmentum vasculosum.
    Cotanche DA; Cotton CU; Gatzy JT; Sulik KK
    Hear Res; 1987; 25(2-3):125-39. PubMed ID: 3558124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of changes in electrolyte composition of the perilymph on endocochlear potentials].
    Sagalovich BM; Mazo IL
    Fiziol Zh SSSR Im I M Sechenova; 1983 Mar; 69(3):357-61. PubMed ID: 6852291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph.
    Sauer G; Richter CP; Klinke R
    Hear Res; 1999 Mar; 129(1-2):1-6. PubMed ID: 10190746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of ethacrynic acid upon the potassium concentration in guinea pig cochlear fluids.
    Melichar I; Syka J
    Hear Res; 1978 Oct; 1(1):35-41. PubMed ID: 757231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential.
    Bosher SK; Warren RL
    J Physiol; 1971 Feb; 212(3):739-61. PubMed ID: 5557069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea-pig.
    Bosher SK
    J Physiol; 1979 Aug; 293():329-45. PubMed ID: 41092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H; Higashi-Shingai K; Fujita A; Iwai K; Ishii M; Kurachi Y
    Eur J Neurosci; 2004 Jan; 19(1):76-84. PubMed ID: 14750965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of vestibular labyrinth destruction on endocochlear potential and potassium concentration of the cochlea.
    Ikeda R; Nakaya K; Yamazaki M; Oshima T; Kawase T; Kobayashi T
    Hear Res; 2010 Jun; 265(1-2):90-5. PubMed ID: 20045046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of monovalent ions in the endolymph in mouse cochlea.
    Yamasaki M; Komune S; Shimozono M; Matsuda K; Haruta A
    ORL J Otorhinolaryngol Relat Spec; 2000; 62(5):241-6. PubMed ID: 10965258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenylate cyclase modulation of ion permeability in the guinea pig cochlea: a possible mechanism for the formation of endolymphatic hydrops.
    Doi K; Mori N; Matsunaga T
    Acta Otolaryngol; 1992; 112(4):667-73. PubMed ID: 1442013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endolymphatic potassium of the chicken vestibule during embryonic development.
    Masetto S; Zucca G; Bottà L; Valli P
    Int J Dev Neurosci; 2005 Aug; 23(5):439-48. PubMed ID: 15970419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the Ménière attack.
    Dohlman GF
    ORL J Otorhinolaryngol Relat Spec; 1980; 42(1-2):10-9. PubMed ID: 7189270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.