BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17699453)

  • 1. Hemofiltration of recombinant hirudin by different hemodialyzer membranes: implications for clinical use.
    Benz K; Nauck MA; Böhler J; Fischer KG
    Clin J Am Soc Nephrol; 2007 May; 2(3):470-6. PubMed ID: 17699453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hirudin elimination by hemofiltration: a comparative in vitro study of different membranes.
    Frank RD; Farber H; Stefanidis I; Lanzmich R; Kierdorf HP
    Kidney Int Suppl; 1999 Nov; (72):S41-5. PubMed ID: 10560804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological relevance of anti-recombinant hirudin antibodies--results from in vitro and in vivo studies.
    Liebe V; Brückmann M; Fischer KG; Haase KK; Borggrefe M; Huhle G
    Semin Thromb Hemost; 2002 Oct; 28(5):483-90. PubMed ID: 12420244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro studies on hirudin elimination by haemofiltration: comparison of three high-flux membranes.
    Frank RD; Farber H; Lanzmich R; Floege J; Kierdorf HP
    Nephrol Dial Transplant; 2002 Nov; 17(11):1957-63. PubMed ID: 12401853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-hirudin antibodies alter pharmacokinetics and pharmacodynamics of recombinant hirudin.
    Fischer KG; Liebe V; Hudek R; Piazolo L; Haase KK; Borggrefe M; Huhle G
    Thromb Haemost; 2003 Jun; 89(6):973-82. PubMed ID: 12783109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of lepirudin, a recombinant hirudin, by hemodialysis, hemofiltration, or plasmapheresis.
    Willey ML; de Denus S; Spinler SA
    Pharmacotherapy; 2002 Apr; 22(4):492-9. PubMed ID: 11939684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo evaluation of enoxaparin removal by continuous renal replacement therapies with acrylonitrile and polysulfone membranes.
    Isla A; Gascón AR; Maynar J; Arzuaga A; Corral E; Martín A; Solinís MA; Muñoz JL
    Clin Ther; 2005 Sep; 27(9):1444-51. PubMed ID: 16291417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hirudin in renal insufficiency.
    Fischer KG
    Semin Thromb Hemost; 2002 Oct; 28(5):467-82. PubMed ID: 12420243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant hirudin (lepirudin) as anticoagulant in intensive care patients treated with continuous hemodialysis.
    Fischer KG; van de Loo A; Böhler J
    Kidney Int Suppl; 1999 Nov; (72):S46-50. PubMed ID: 10560805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetic studies with recombinant hirudin in dogs.
    Nowak G; Markwardt F; Fink E
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1988; 115(1-2):70-4. PubMed ID: 2459035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of standard high-flux polysulfone versus novel high-flux polysulfone dialysis membranes on inflammatory markers: a randomized, single-blinded, controlled clinical trial.
    Kerr PG; Sutherland WH; de Jong S; Vaithalingham I; Williams SM; Walker RJ
    Am J Kidney Dis; 2007 Apr; 49(4):533-9. PubMed ID: 17386321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of cellulose triacetate dialyzer and polysulfone synthetic hemofilter for continuous venovenous hemofiltration in acute renal failure.
    Pichaiwong W; Leelahavanichkul A; Eiam-ong S
    J Med Assoc Thai; 2006 Aug; 89 Suppl 2():S65-72. PubMed ID: 17044456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of hirudin overdosage in a dialysis patient with heparin-induced thrombocytopenia with mixed hemodialysis and hemofiltration treatment.
    Mon C; Moreno G; Ortiz M; Diaz R; Herrero JC; Oliet A; Rodriguez I; Ortega O; Gallar P; Vigil A
    Clin Nephrol; 2006 Oct; 66(4):302-5. PubMed ID: 17063999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of bisphenol a in effluents of hemodialyzers.
    Yamasaki H; Nagake Y; Makino H
    Nephron; 2001 Aug; 88(4):376-8. PubMed ID: 11474234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro study of r-hirudin permeability through membranes of different haemodialysers.
    Bucha E; Kreml R; Nowak G
    Nephrol Dial Transplant; 1999 Dec; 14(12):2922-6. PubMed ID: 10570098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of peracetic acid reprocessing on the transport characteristics of polysulfone hemodialyzers.
    Wolff SH; Zydney AL
    Artif Organs; 2005 Feb; 29(2):166-73. PubMed ID: 15670286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro AN69 and polysulphone membrane permeability to ceftazidime and in vivo pharmacokinetics during continuous renal replacement therapies.
    Isla A; Gascón AR; Maynar J; Arzuaga A; Sánchez-Izquierdo JA; Pedraz JL
    Chemotherapy; 2007; 53(3):194-201. PubMed ID: 17356270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational thrombelastometry for the bedside monitoring of recombinant hirudin.
    Sucker C; Zotz RB; Görlinger K; Hartmann M
    Acta Anaesthesiol Scand; 2008 Mar; 52(3):358-62. PubMed ID: 18205897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meropenem and continuous renal replacement therapy: in vitro permeability of 2 continuous renal replacement therapy membranes and influence of patient renal function on the pharmacokinetics in critically ill patients.
    Isla A; Maynar J; Sánchez-Izquierdo JA; Gascón AR; Arzuaga A; Corral E; Pedraz JL
    J Clin Pharmacol; 2005 Nov; 45(11):1294-304. PubMed ID: 16239363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.