These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 1769965)
21. Clostridium perfringens exotoxins. III. Binding of theta-toxin to erythrocyte membrane. Hase J; Mitsui K; Shonaka E Jpn J Exp Med; 1975 Dec; 45(6):433-8. PubMed ID: 183032 [TBL] [Abstract][Full Text] [Related]
22. Membrane damage of liposomes by the mushroom toxin phallolysin. Bühring HJ; Vaisius AC; Faulstich H Biochim Biophys Acta; 1983 Aug; 733(1):117-23. PubMed ID: 6882750 [TBL] [Abstract][Full Text] [Related]
23. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Ramachandran R; Heuck AP; Tweten RK; Johnson AE Nat Struct Biol; 2002 Nov; 9(11):823-7. PubMed ID: 12368903 [TBL] [Abstract][Full Text] [Related]
24. Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O. Bavdek A; Gekara NO; Priselac D; Gutiérrez Aguirre I; Darji A; Chakraborty T; Macek P; Lakey JH; Weiss S; Anderluh G Biochemistry; 2007 Apr; 46(14):4425-37. PubMed ID: 17358050 [TBL] [Abstract][Full Text] [Related]
25. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Shatursky O; Heuck AP; Shepard LA; Rossjohn J; Parker MW; Johnson AE; Tweten RK Cell; 1999 Oct; 99(3):293-9. PubMed ID: 10555145 [TBL] [Abstract][Full Text] [Related]
26. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Shepard LA; Heuck AP; Hamman BD; Rossjohn J; Parker MW; Ryan KR; Johnson AE; Tweten RK Biochemistry; 1998 Oct; 37(41):14563-74. PubMed ID: 9772185 [TBL] [Abstract][Full Text] [Related]
27. Membrane permeabilization by Listeria monocytogenes phosphatidylinositol-specific phospholipase C is independent of phospholipid hydrolysis and cooperative with listeriolysin O. Goldfine H; Knob C; Alford D; Bentz J Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2979-83. PubMed ID: 7708759 [TBL] [Abstract][Full Text] [Related]
28. Interaction of Clostridium perfringens theta-haemolysin, a contaminant of commercial phospholipase C, with erythrocyte ghost membranes and lipid dispersions. A morphological study. Smyth CJ; Freer JH; Arbuthnott JP Biochim Biophys Acta; 1975 Apr; 382(4):479-93. PubMed ID: 164911 [TBL] [Abstract][Full Text] [Related]
29. Interaction of Clostridium perfringens delta toxin with erythrocyte and liposome membranes and relation with the specific binding to the ganglioside GM2. Jolivet-Reynaud C; Hauttecoeur B; Alouf JE Toxicon; 1989; 27(10):1113-26. PubMed ID: 2554536 [TBL] [Abstract][Full Text] [Related]
30. Ultrasensitive Label-Free Detection of Protein-Membrane Interaction Exemplified by Toxin-Liposome Insertion. Schönfeldová T; Okur HI; Vezočnik V; Iacovache I; Cao C; Dal Peraro M; Maček P; Zuber B; Roke S J Phys Chem Lett; 2022 Apr; 13(14):3197-3201. PubMed ID: 35377651 [TBL] [Abstract][Full Text] [Related]
31. The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Shimada Y; Maruya M; Iwashita S; Ohno-Iwashita Y Eur J Biochem; 2002 Dec; 269(24):6195-203. PubMed ID: 12473115 [TBL] [Abstract][Full Text] [Related]
32. Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding. Flanagan JJ; Tweten RK; Johnson AE; Heuck AP Biochemistry; 2009 May; 48(18):3977-87. PubMed ID: 19292457 [TBL] [Abstract][Full Text] [Related]
33. The projection structure of perfringolysin O (Clostridium perfringens theta-toxin). Olofsson A; Hebert H; Thelestam M FEBS Lett; 1993 Mar; 319(1-2):125-7. PubMed ID: 8454043 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of the binding of cytochrome b5 to phosphatidylcholine vesicles by cholesterol. Tajima S; Sato R Biochim Biophys Acta; 1979 Jan; 550(2):357-61. PubMed ID: 758952 [TBL] [Abstract][Full Text] [Related]
35. Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Menestrina G; Bashford CL; Pasternak CA Toxicon; 1990; 28(5):477-91. PubMed ID: 1697105 [TBL] [Abstract][Full Text] [Related]
36. Effects of cholesterol evulsion on susceptibility to perfringolysin O of human erythrocytes. Mitsui K; Saeki Y; Hase J Biochim Biophys Acta; 1982 Apr; 686(2):177-81. PubMed ID: 6282326 [TBL] [Abstract][Full Text] [Related]
37. Role of the essential thiol group in the thiol-activated cytolysin from Clostridium perfringens. Iwamoto M; Ohno-Iwashita Y; Ando S Eur J Biochem; 1987 Sep; 167(3):425-30. PubMed ID: 2888650 [TBL] [Abstract][Full Text] [Related]
38. Surface properties of bacterial sulfhydryl-activated cytolytic toxins. Interaction with monomolecular films of phosphatidylcholine and various sterols. Alouf JE; Geoffroy C; Pattus F; Verger R Eur J Biochem; 1984 May; 141(1):205-10. PubMed ID: 6723658 [TBL] [Abstract][Full Text] [Related]
39. Effect of fatty acyl domain of phospholipids on the membrane-channel formation of Staphylococcus aureus alpha-toxin in liposome membrane. Tomita T; Watanabe M; Yasuda T Biochim Biophys Acta; 1992 Mar; 1104(2):325-30. PubMed ID: 1372180 [TBL] [Abstract][Full Text] [Related]